SentenceTransformer based on Alibaba-NLP/gte-multilingual-base
This is a sentence-transformers model finetuned from Alibaba-NLP/gte-multilingual-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Alibaba-NLP/gte-multilingual-base
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("lucian-li/my_new_model")
# Run inference
sentences = [
'Carrier aggregation measurement accuracy',
'Reference Signal Time Difference (RSTD) Measurement Accuracy\nRequirements for Carrier Aggregation\nA.8\nUE Measurements Procedures\nA.9\nMeasurement Performance Requirements\nNOTE:\nOnly requirements and test cases in this table defined for inter-band carrier aggregation shall apply.\n\n\nETSI\nETSI TS 136 307 V10.17.0 (2016-01)',
'Operator control\nThree general architectures are candidates to offer energy savings functionalities:\nDistributed, NM-Centralized, EM-Centralized as defined in TS 32.500 [6].\nEnergy savings in cells can be initiated in several different ways. Some of the mechanisms are:\nFor NM-centralized architecture\n-\nIRPManager instructs the cells to move to energySaving state (e.g. according to a schedule determined by\nnetwork statistics) , configures trigger points (e.g. load threshold crossing) when it want',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 583,058 training samples
- Columns:
anchorandpositive - Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 7 tokens
- mean: 85.73 tokens
- max: 229 tokens
- min: 7 tokens
- mean: 85.86 tokens
- max: 229 tokens
- Samples:
anchor positive Triggering Optimization Function (TG_F)
This functional bloc supports the following functions: [SO2], [SO3].Optimization Fallback Function (O_FB_F)
This functional bloc supports the following functions: [SO7], [SO9], [SO10].Optimization Fallback Function (O_FB_F)
This functional bloc supports the following functions: [SO7], [SO9], [SO10].Self-Optimization Progress Update Function (SO_PGS_UF)
This function updates the self-optimization progress and important events to the operator: [SO11]Self-Optimization Progress Update Function (SO_PGS_UF)
This function updates the self-optimization progress and important events to the operator: [SO11]NRM IRP Update Function (NRM_UF)
This function updates the E-UTRAN and EPC NRM IRP with the optimization modification if needed. - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size: 11num_train_epochs: 1warmup_ratio: 0.1
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 11per_device_eval_batch_size: 8per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size: 0fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional
Training Logs
Click to expand
| Epoch | Step | Training Loss |
|---|---|---|
| 0.0019 | 100 | 0.8198 |
| 0.0038 | 200 | 0.7651 |
| 0.0057 | 300 | 0.6659 |
| 0.0075 | 400 | 0.6404 |
| 0.0094 | 500 | 0.5638 |
| 0.0113 | 600 | 0.5184 |
| 0.0132 | 700 | 0.448 |
| 0.0151 | 800 | 0.4464 |
| 0.0170 | 900 | 0.3461 |
| 0.0189 | 1000 | 0.3731 |
| 0.0208 | 1100 | 0.343 |
| 0.0226 | 1200 | 0.3557 |
| 0.0245 | 1300 | 0.3623 |
| 0.0264 | 1400 | 0.2941 |
| 0.0283 | 1500 | 0.3153 |
| 0.0302 | 1600 | 0.2724 |
| 0.0321 | 1700 | 0.2702 |
| 0.0340 | 1800 | 0.2934 |
| 0.0358 | 1900 | 0.2255 |
| 0.0377 | 2000 | 0.2519 |
| 0.0396 | 2100 | 0.2424 |
| 0.0415 | 2200 | 0.1883 |
| 0.0434 | 2300 | 0.2428 |
| 0.0453 | 2400 | 0.2212 |
| 0.0472 | 2500 | 0.1862 |
| 0.0491 | 2600 | 0.2451 |
| 0.0509 | 2700 | 0.2336 |
| 0.0528 | 2800 | 0.225 |
| 0.0547 | 2900 | 0.2154 |
| 0.0566 | 3000 | 0.1907 |
| 0.0585 | 3100 | 0.2514 |
| 0.0604 | 3200 | 0.2082 |
| 0.0623 | 3300 | 0.2076 |
| 0.0641 | 3400 | 0.1818 |
| 0.0660 | 3500 | 0.1688 |
| 0.0679 | 3600 | 0.2261 |
| 0.0698 | 3700 | 0.2108 |
| 0.0717 | 3800 | 0.1732 |
| 0.0736 | 3900 | 0.1764 |
| 0.0755 | 4000 | 0.1481 |
| 0.0773 | 4100 | 0.1687 |
| 0.0792 | 4200 | 0.1897 |
| 0.0811 | 4300 | 0.1685 |
| 0.0830 | 4400 | 0.1915 |
| 0.0849 | 4500 | 0.2013 |
| 0.0868 | 4600 | 0.1701 |
| 0.0887 | 4700 | 0.2006 |
| 0.0906 | 4800 | 0.2006 |
| 0.0924 | 4900 | 0.1617 |
| 0.0943 | 5000 | 0.1406 |
| 0.0962 | 5100 | 0.1456 |
| 0.0981 | 5200 | 0.1703 |
| 0.1000 | 5300 | 0.1464 |
| 0.1019 | 5400 | 0.1803 |
| 0.1038 | 5500 | 0.1346 |
| 0.1056 | 5600 | 0.134 |
| 0.1075 | 5700 | 0.1567 |
| 0.1094 | 5800 | 0.163 |
| 0.1113 | 5900 | 0.1544 |
| 0.1132 | 6000 | 0.1648 |
| 0.1151 | 6100 | 0.1505 |
| 0.1170 | 6200 | 0.1231 |
| 0.1189 | 6300 | 0.1591 |
| 0.1207 | 6400 | 0.1533 |
| 0.1226 | 6500 | 0.1376 |
| 0.1245 | 6600 | 0.1473 |
| 0.1264 | 6700 | 0.1405 |
| 0.1283 | 6800 | 0.141 |
| 0.1302 | 6900 | 0.1105 |
| 0.1321 | 7000 | 0.1712 |
| 0.1339 | 7100 | 0.1534 |
| 0.1358 | 7200 | 0.1578 |
| 0.1377 | 7300 | 0.1101 |
| 0.1396 | 7400 | 0.128 |
| 0.1415 | 7500 | 0.1679 |
| 0.1434 | 7600 | 0.1592 |
| 0.1453 | 7700 | 0.1383 |
| 0.1472 | 7800 | 0.1274 |
| 0.1490 | 7900 | 0.1616 |
| 0.1509 | 8000 | 0.1617 |
| 0.1528 | 8100 | 0.1361 |
| 0.1547 | 8200 | 0.1268 |
| 0.1566 | 8300 | 0.1286 |
| 0.1585 | 8400 | 0.1253 |
| 0.1604 | 8500 | 0.1157 |
| 0.1622 | 8600 | 0.1499 |
| 0.1641 | 8700 | 0.1398 |
| 0.1660 | 8800 | 0.1188 |
| 0.1679 | 8900 | 0.1103 |
| 0.1698 | 9000 | 0.1217 |
| 0.1717 | 9100 | 0.1144 |
| 0.1736 | 9200 | 0.1203 |
| 0.1755 | 9300 | 0.1074 |
| 0.1773 | 9400 | 0.1145 |
| 0.1792 | 9500 | 0.1035 |
| 0.1811 | 9600 | 0.1406 |
| 0.1830 | 9700 | 0.1465 |
| 0.1849 | 9800 | 0.1169 |
| 0.1868 | 9900 | 0.1115 |
| 0.1887 | 10000 | 0.1207 |
| 0.1905 | 10100 | 0.1191 |
| 0.1924 | 10200 | 0.1099 |
| 0.1943 | 10300 | 0.1309 |
| 0.1962 | 10400 | 0.1092 |
| 0.1981 | 10500 | 0.1075 |
| 0.2000 | 10600 | 0.1174 |
| 0.2019 | 10700 | 0.1103 |
| 0.2038 | 10800 | 0.1077 |
| 0.2056 | 10900 | 0.0844 |
| 0.2075 | 11000 | 0.1093 |
| 0.2094 | 11100 | 0.1428 |
| 0.2113 | 11200 | 0.0928 |
| 0.2132 | 11300 | 0.1039 |
| 0.2151 | 11400 | 0.1436 |
| 0.2170 | 11500 | 0.1197 |
| 0.2188 | 11600 | 0.1249 |
| 0.2207 | 11700 | 0.0856 |
| 0.2226 | 11800 | 0.1126 |
| 0.2245 | 11900 | 0.1028 |
| 0.2264 | 12000 | 0.0988 |
| 0.2283 | 12100 | 0.1031 |
| 0.2302 | 12200 | 0.101 |
| 0.2320 | 12300 | 0.1188 |
| 0.2339 | 12400 | 0.0908 |
| 0.2358 | 12500 | 0.069 |
| 0.2377 | 12600 | 0.1099 |
| 0.2396 | 12700 | 0.1227 |
| 0.2415 | 12800 | 0.0794 |
| 0.2434 | 12900 | 0.0969 |
| 0.2453 | 13000 | 0.0864 |
| 0.2471 | 13100 | 0.1193 |
| 0.2490 | 13200 | 0.0824 |
| 0.2509 | 13300 | 0.12 |
| 0.2528 | 13400 | 0.0928 |
| 0.2547 | 13500 | 0.1126 |
| 0.2566 | 13600 | 0.0912 |
| 0.2585 | 13700 | 0.1126 |
| 0.2603 | 13800 | 0.078 |
| 0.2622 | 13900 | 0.0715 |
| 0.2641 | 14000 | 0.1095 |
| 0.2660 | 14100 | 0.089 |
| 0.2679 | 14200 | 0.0926 |
| 0.2698 | 14300 | 0.086 |
| 0.2717 | 14400 | 0.1115 |
| 0.2736 | 14500 | 0.0996 |
| 0.2754 | 14600 | 0.1014 |
| 0.2773 | 14700 | 0.1033 |
| 0.2792 | 14800 | 0.0732 |
| 0.2811 | 14900 | 0.0994 |
| 0.2830 | 15000 | 0.0872 |
| 0.2849 | 15100 | 0.0923 |
| 0.2868 | 15200 | 0.111 |
| 0.2886 | 15300 | 0.0891 |
| 0.2905 | 15400 | 0.0868 |
| 0.2924 | 15500 | 0.0773 |
| 0.2943 | 15600 | 0.0918 |
| 0.2962 | 15700 | 0.0726 |
| 0.2981 | 15800 | 0.0951 |
| 0.3000 | 15900 | 0.0835 |
| 0.3019 | 16000 | 0.083 |
| 0.3037 | 16100 | 0.095 |
| 0.3056 | 16200 | 0.0722 |
| 0.3075 | 16300 | 0.1061 |
| 0.3094 | 16400 | 0.0902 |
| 0.3113 | 16500 | 0.0978 |
| 0.3132 | 16600 | 0.0983 |
| 0.3151 | 16700 | 0.0808 |
| 0.3169 | 16800 | 0.0758 |
| 0.3188 | 16900 | 0.071 |
| 0.3207 | 17000 | 0.0918 |
| 0.3226 | 17100 | 0.1011 |
| 0.3245 | 17200 | 0.079 |
| 0.3264 | 17300 | 0.0992 |
| 0.3283 | 17400 | 0.1089 |
| 0.3302 | 17500 | 0.0904 |
| 0.3320 | 17600 | 0.0956 |
| 0.3339 | 17700 | 0.0747 |
| 0.3358 | 17800 | 0.0961 |
| 0.3377 | 17900 | 0.0923 |
| 0.3396 | 18000 | 0.1114 |
| 0.3415 | 18100 | 0.0689 |
| 0.3434 | 18200 | 0.1308 |
| 0.3452 | 18300 | 0.0923 |
| 0.3471 | 18400 | 0.0756 |
| 0.3490 | 18500 | 0.0842 |
| 0.3509 | 18600 | 0.0859 |
| 0.3528 | 18700 | 0.0903 |
| 0.3547 | 18800 | 0.084 |
| 0.3566 | 18900 | 0.0923 |
| 0.3584 | 19000 | 0.0848 |
| 0.3603 | 19100 | 0.0812 |
| 0.3622 | 19200 | 0.0872 |
| 0.3641 | 19300 | 0.083 |
| 0.3660 | 19400 | 0.0826 |
| 0.3679 | 19500 | 0.101 |
| 0.3698 | 19600 | 0.0804 |
| 0.3717 | 19700 | 0.0676 |
| 0.3735 | 19800 | 0.0836 |
| 0.3754 | 19900 | 0.0711 |
| 0.3773 | 20000 | 0.0825 |
| 0.3792 | 20100 | 0.0835 |
| 0.3811 | 20200 | 0.0816 |
| 0.3830 | 20300 | 0.0812 |
| 0.3849 | 20400 | 0.0689 |
| 0.3867 | 20500 | 0.0627 |
| 0.3886 | 20600 | 0.0965 |
| 0.3905 | 20700 | 0.0632 |
| 0.3924 | 20800 | 0.0945 |
| 0.3943 | 20900 | 0.0923 |
| 0.3962 | 21000 | 0.0833 |
| 0.3981 | 21100 | 0.0537 |
| 0.4000 | 21200 | 0.0822 |
| 0.4018 | 21300 | 0.0684 |
| 0.4037 | 21400 | 0.0807 |
| 0.4056 | 21500 | 0.0945 |
| 0.4075 | 21600 | 0.0981 |
| 0.4094 | 21700 | 0.0748 |
| 0.4113 | 21800 | 0.0943 |
| 0.4132 | 21900 | 0.0709 |
| 0.4150 | 22000 | 0.0551 |
| 0.4169 | 22100 | 0.0679 |
| 0.4188 | 22200 | 0.0666 |
| 0.4207 | 22300 | 0.0976 |
| 0.4226 | 22400 | 0.0666 |
| 0.4245 | 22500 | 0.0651 |
| 0.4264 | 22600 | 0.0803 |
| 0.4283 | 22700 | 0.068 |
| 0.4301 | 22800 | 0.0541 |
| 0.4320 | 22900 | 0.0487 |
| 0.4339 | 23000 | 0.091 |
| 0.4358 | 23100 | 0.074 |
| 0.4377 | 23200 | 0.0733 |
| 0.4396 | 23300 | 0.0845 |
| 0.4415 | 23400 | 0.0823 |
| 0.4433 | 23500 | 0.0561 |
| 0.4452 | 23600 | 0.0508 |
| 0.4471 | 23700 | 0.074 |
| 0.4490 | 23800 | 0.0683 |
| 0.4509 | 23900 | 0.0797 |
| 0.4528 | 24000 | 0.0561 |
| 0.4547 | 24100 | 0.0744 |
| 0.4566 | 24200 | 0.0638 |
| 0.4584 | 24300 | 0.0633 |
| 0.4603 | 24400 | 0.062 |
| 0.4622 | 24500 | 0.0887 |
| 0.4641 | 24600 | 0.0908 |
| 0.4660 | 24700 | 0.0654 |
| 0.4679 | 24800 | 0.0522 |
| 0.4698 | 24900 | 0.0851 |
| 0.4716 | 25000 | 0.0763 |
| 0.4735 | 25100 | 0.0623 |
| 0.4754 | 25200 | 0.0712 |
| 0.4773 | 25300 | 0.0866 |
| 0.4792 | 25400 | 0.0812 |
| 0.4811 | 25500 | 0.0706 |
| 0.4830 | 25600 | 0.0734 |
| 0.4849 | 25700 | 0.068 |
| 0.4867 | 25800 | 0.111 |
| 0.4886 | 25900 | 0.0627 |
| 0.4905 | 26000 | 0.0459 |
| 0.4924 | 26100 | 0.0794 |
| 0.4943 | 26200 | 0.0547 |
| 0.4962 | 26300 | 0.0779 |
| 0.4981 | 26400 | 0.0609 |
| 0.4999 | 26500 | 0.0785 |
| 0.5018 | 26600 | 0.0722 |
| 0.5037 | 26700 | 0.0585 |
| 0.5056 | 26800 | 0.0572 |
| 0.5075 | 26900 | 0.0636 |
| 0.5094 | 27000 | 0.0642 |
| 0.5113 | 27100 | 0.0606 |
| 0.5131 | 27200 | 0.0725 |
| 0.5150 | 27300 | 0.0664 |
| 0.5169 | 27400 | 0.0933 |
| 0.5188 | 27500 | 0.0486 |
| 0.5207 | 27600 | 0.0514 |
| 0.5226 | 27700 | 0.0779 |
| 0.5245 | 27800 | 0.0614 |
| 0.5264 | 27900 | 0.0646 |
| 0.5282 | 28000 | 0.0606 |
| 0.5301 | 28100 | 0.0453 |
| 0.5320 | 28200 | 0.0749 |
| 0.5339 | 28300 | 0.0695 |
| 0.5358 | 28400 | 0.0897 |
| 0.5377 | 28500 | 0.0612 |
| 0.5396 | 28600 | 0.0542 |
| 0.5414 | 28700 | 0.0504 |
| 0.5433 | 28800 | 0.0539 |
| 0.5452 | 28900 | 0.0584 |
| 0.5471 | 29000 | 0.0552 |
| 0.5490 | 29100 | 0.076 |
| 0.5509 | 29200 | 0.0861 |
| 0.5528 | 29300 | 0.067 |
| 0.5547 | 29400 | 0.0887 |
| 0.5565 | 29500 | 0.059 |
| 0.5584 | 29600 | 0.0484 |
| 0.5603 | 29700 | 0.0703 |
| 0.5622 | 29800 | 0.0802 |
| 0.5641 | 29900 | 0.0805 |
| 0.5660 | 30000 | 0.0737 |
| 0.5679 | 30100 | 0.0518 |
| 0.5697 | 30200 | 0.0517 |
| 0.5716 | 30300 | 0.0806 |
| 0.5735 | 30400 | 0.0586 |
| 0.5754 | 30500 | 0.0491 |
| 0.5773 | 30600 | 0.0591 |
| 0.5792 | 30700 | 0.066 |
| 0.5811 | 30800 | 0.0419 |
| 0.5830 | 30900 | 0.0517 |
| 0.5848 | 31000 | 0.0539 |
| 0.5867 | 31100 | 0.0845 |
| 0.5886 | 31200 | 0.044 |
| 0.5905 | 31300 | 0.0597 |
| 0.5924 | 31400 | 0.0556 |
| 0.5943 | 31500 | 0.0724 |
| 0.5962 | 31600 | 0.0465 |
| 0.5980 | 31700 | 0.0585 |
| 0.5999 | 31800 | 0.0978 |
| 0.6018 | 31900 | 0.0657 |
| 0.6037 | 32000 | 0.0438 |
| 0.6056 | 32100 | 0.0429 |
| 0.6075 | 32200 | 0.0629 |
| 0.6094 | 32300 | 0.0591 |
| 0.6113 | 32400 | 0.0543 |
| 0.6131 | 32500 | 0.0502 |
| 0.6150 | 32600 | 0.0733 |
| 0.6169 | 32700 | 0.0426 |
| 0.6188 | 32800 | 0.0626 |
| 0.6207 | 32900 | 0.0406 |
| 0.6226 | 33000 | 0.0524 |
| 0.6245 | 33100 | 0.0619 |
| 0.6263 | 33200 | 0.0633 |
| 0.6282 | 33300 | 0.0582 |
| 0.6301 | 33400 | 0.0852 |
| 0.6320 | 33500 | 0.0482 |
| 0.6339 | 33600 | 0.0509 |
| 0.6358 | 33700 | 0.0626 |
| 0.6377 | 33800 | 0.0609 |
| 0.6396 | 33900 | 0.0508 |
| 0.6414 | 34000 | 0.0486 |
| 0.6433 | 34100 | 0.0508 |
| 0.6452 | 34200 | 0.0581 |
| 0.6471 | 34300 | 0.0409 |
| 0.6490 | 34400 | 0.0703 |
| 0.6509 | 34500 | 0.0606 |
| 0.6528 | 34600 | 0.0517 |
| 0.6546 | 34700 | 0.0493 |
| 0.6565 | 34800 | 0.0271 |
| 0.6584 | 34900 | 0.0337 |
| 0.6603 | 35000 | 0.0369 |
| 0.6622 | 35100 | 0.0474 |
| 0.6641 | 35200 | 0.0562 |
| 0.6660 | 35300 | 0.0663 |
| 0.6678 | 35400 | 0.0419 |
| 0.6697 | 35500 | 0.0766 |
| 0.6716 | 35600 | 0.0439 |
| 0.6735 | 35700 | 0.0538 |
| 0.6754 | 35800 | 0.0512 |
| 0.6773 | 35900 | 0.0388 |
| 0.6792 | 36000 | 0.0528 |
| 0.6811 | 36100 | 0.0489 |
| 0.6829 | 36200 | 0.0454 |
| 0.6848 | 36300 | 0.0449 |
| 0.6867 | 36400 | 0.055 |
| 0.6886 | 36500 | 0.0344 |
| 0.6905 | 36600 | 0.0485 |
| 0.6924 | 36700 | 0.0496 |
| 0.6943 | 36800 | 0.0705 |
| 0.6961 | 36900 | 0.0617 |
| 0.6980 | 37000 | 0.054 |
| 0.6999 | 37100 | 0.0613 |
| 0.7018 | 37200 | 0.0549 |
| 0.7037 | 37300 | 0.0378 |
| 0.7056 | 37400 | 0.0508 |
| 0.7075 | 37500 | 0.0613 |
| 0.7094 | 37600 | 0.0602 |
| 0.7112 | 37700 | 0.0592 |
| 0.7131 | 37800 | 0.0441 |
| 0.7150 | 37900 | 0.0445 |
| 0.7169 | 38000 | 0.0464 |
| 0.7188 | 38100 | 0.0537 |
| 0.7207 | 38200 | 0.0521 |
| 0.7226 | 38300 | 0.0447 |
| 0.7244 | 38400 | 0.044 |
| 0.7263 | 38500 | 0.0506 |
| 0.7282 | 38600 | 0.043 |
| 0.7301 | 38700 | 0.0441 |
| 0.7320 | 38800 | 0.0444 |
| 0.7339 | 38900 | 0.0416 |
| 0.7358 | 39000 | 0.0556 |
| 0.7377 | 39100 | 0.0829 |
| 0.7395 | 39200 | 0.043 |
| 0.7414 | 39300 | 0.0366 |
| 0.7433 | 39400 | 0.0457 |
| 0.7452 | 39500 | 0.0622 |
| 0.7471 | 39600 | 0.0353 |
| 0.7490 | 39700 | 0.0597 |
| 0.7509 | 39800 | 0.0468 |
| 0.7527 | 39900 | 0.0418 |
| 0.7546 | 40000 | 0.0606 |
| 0.7565 | 40100 | 0.0613 |
| 0.7584 | 40200 | 0.0654 |
| 0.7603 | 40300 | 0.046 |
| 0.7622 | 40400 | 0.034 |
| 0.7641 | 40500 | 0.0378 |
| 0.7660 | 40600 | 0.0461 |
| 0.7678 | 40700 | 0.0404 |
| 0.7697 | 40800 | 0.0583 |
| 0.7716 | 40900 | 0.0636 |
| 0.7735 | 41000 | 0.0537 |
| 0.7754 | 41100 | 0.0336 |
| 0.7773 | 41200 | 0.0315 |
| 0.7792 | 41300 | 0.0536 |
| 0.7810 | 41400 | 0.0532 |
| 0.7829 | 41500 | 0.0553 |
| 0.7848 | 41600 | 0.0458 |
| 0.7867 | 41700 | 0.0372 |
| 0.7886 | 41800 | 0.0346 |
| 0.7905 | 41900 | 0.0419 |
| 0.7924 | 42000 | 0.0461 |
| 0.7942 | 42100 | 0.0517 |
| 0.7961 | 42200 | 0.0574 |
| 0.7980 | 42300 | 0.0411 |
| 0.7999 | 42400 | 0.0389 |
| 0.8018 | 42500 | 0.0578 |
| 0.8037 | 42600 | 0.0637 |
| 0.8056 | 42700 | 0.0434 |
| 0.8075 | 42800 | 0.0776 |
| 0.8093 | 42900 | 0.0644 |
| 0.8112 | 43000 | 0.0537 |
| 0.8131 | 43100 | 0.0519 |
| 0.8150 | 43200 | 0.0241 |
| 0.8169 | 43300 | 0.0295 |
| 0.8188 | 43400 | 0.0618 |
| 0.8207 | 43500 | 0.0275 |
| 0.8225 | 43600 | 0.0605 |
| 0.8244 | 43700 | 0.0414 |
| 0.8263 | 43800 | 0.0446 |
| 0.8282 | 43900 | 0.0449 |
| 0.8301 | 44000 | 0.0558 |
| 0.8320 | 44100 | 0.0336 |
| 0.8339 | 44200 | 0.0555 |
| 0.8358 | 44300 | 0.0399 |
| 0.8376 | 44400 | 0.0319 |
| 0.8395 | 44500 | 0.0331 |
| 0.8414 | 44600 | 0.0415 |
| 0.8433 | 44700 | 0.0424 |
| 0.8452 | 44800 | 0.0287 |
| 0.8471 | 44900 | 0.044 |
| 0.8490 | 45000 | 0.0375 |
| 0.8508 | 45100 | 0.032 |
| 0.8527 | 45200 | 0.0406 |
| 0.8546 | 45300 | 0.0429 |
| 0.8565 | 45400 | 0.0727 |
| 0.8584 | 45500 | 0.05 |
| 0.8603 | 45600 | 0.0436 |
| 0.8622 | 45700 | 0.0401 |
| 0.8641 | 45800 | 0.0312 |
| 0.8659 | 45900 | 0.036 |
| 0.8678 | 46000 | 0.0558 |
| 0.8697 | 46100 | 0.0436 |
| 0.8716 | 46200 | 0.0517 |
| 0.8735 | 46300 | 0.0361 |
| 0.8754 | 46400 | 0.038 |
| 0.8773 | 46500 | 0.0418 |
| 0.8791 | 46600 | 0.0407 |
| 0.8810 | 46700 | 0.0336 |
| 0.8829 | 46800 | 0.0559 |
| 0.8848 | 46900 | 0.0488 |
| 0.8867 | 47000 | 0.0463 |
| 0.8886 | 47100 | 0.0504 |
| 0.8905 | 47200 | 0.0414 |
| 0.8924 | 47300 | 0.0428 |
| 0.8942 | 47400 | 0.0389 |
| 0.8961 | 47500 | 0.0422 |
| 0.8980 | 47600 | 0.0533 |
| 0.8999 | 47700 | 0.0386 |
| 0.9018 | 47800 | 0.0672 |
| 0.9037 | 47900 | 0.0505 |
| 0.9056 | 48000 | 0.0632 |
| 0.9074 | 48100 | 0.0263 |
| 0.9093 | 48200 | 0.0448 |
| 0.9112 | 48300 | 0.0413 |
| 0.9131 | 48400 | 0.0532 |
| 0.9150 | 48500 | 0.0503 |
| 0.9169 | 48600 | 0.0472 |
| 0.9188 | 48700 | 0.0255 |
| 0.9207 | 48800 | 0.035 |
| 0.9225 | 48900 | 0.0353 |
| 0.9244 | 49000 | 0.0407 |
| 0.9263 | 49100 | 0.0154 |
| 0.9282 | 49200 | 0.0535 |
| 0.9301 | 49300 | 0.0435 |
| 0.9320 | 49400 | 0.0461 |
| 0.9339 | 49500 | 0.0288 |
| 0.9357 | 49600 | 0.0366 |
| 0.9376 | 49700 | 0.0411 |
| 0.9395 | 49800 | 0.0605 |
| 0.9414 | 49900 | 0.0551 |
| 0.9433 | 50000 | 0.0297 |
| 0.9452 | 50100 | 0.0388 |
| 0.9471 | 50200 | 0.0402 |
| 0.9489 | 50300 | 0.0321 |
| 0.9508 | 50400 | 0.0538 |
| 0.9527 | 50500 | 0.036 |
| 0.9546 | 50600 | 0.0318 |
| 0.9565 | 50700 | 0.0398 |
| 0.9584 | 50800 | 0.0405 |
| 0.9603 | 50900 | 0.0408 |
| 0.9622 | 51000 | 0.0485 |
| 0.9640 | 51100 | 0.047 |
| 0.9659 | 51200 | 0.0452 |
| 0.9678 | 51300 | 0.0469 |
| 0.9697 | 51400 | 0.0473 |
| 0.9716 | 51500 | 0.039 |
| 0.9735 | 51600 | 0.0579 |
| 0.9754 | 51700 | 0.0332 |
| 0.9772 | 51800 | 0.0322 |
| 0.9791 | 51900 | 0.0324 |
| 0.9810 | 52000 | 0.035 |
| 0.9829 | 52100 | 0.0517 |
| 0.9848 | 52200 | 0.0275 |
| 0.9867 | 52300 | 0.0466 |
| 0.9886 | 52400 | 0.0452 |
| 0.9905 | 52500 | 0.0446 |
| 0.9923 | 52600 | 0.0357 |
| 0.9942 | 52700 | 0.0368 |
| 0.9961 | 52800 | 0.0365 |
| 0.9980 | 52900 | 0.0303 |
| 0.9999 | 53000 | 0.0288 |
Framework Versions
- Python: 3.11.12
- Sentence Transformers: 3.4.1
- Transformers: 4.51.1
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.2
- Datasets: 3.5.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 4
Model tree for lucian-li/my_new_model
Base model
Alibaba-NLP/gte-multilingual-base