distiluse-es-legal-embeddings
This is a sentence-transformers model finetuned from sentence-transformers/distiluse-base-multilingual-cased-v2. It maps sentences & paragraphs to a 512-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/distiluse-base-multilingual-cased-v2
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 512 dimensions
- Similarity Function: Cosine Similarity
- Language: es
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False, 'architecture': 'DistilBertModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 768, 'out_features': 512, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("luiggy2620/distiluse-es-legal-balanced-final")
# Run inference
sentences = [
'TERCERA. OBJETO. LA VENDEDORA de su libre y espontánea voluntad, sin que medie presión alguna, dolo u otro vicio de consentimiento y por convenir así a sus intereses, da en venta real y definitiva la totalidad del inmueble a LA COMPRADORA, por el precio bilateralmente convenido de precio_1 que LA VENDEDORA, declara recibir en su integridad, en efectivo, en moneda de curso legal y a su entera satisfacción a tiempo de suscribir el presente contrato.',
'¿Qué vende la vendedora a la compradora?',
'Qué tipos de sellos aparecen al margen de la minuta?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 512]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[ 1.0000, 0.3758, -0.0276],
# [ 0.3758, 1.0000, -0.0335],
# [-0.0276, -0.0335, 1.0000]])
Evaluation
Metrics
Triplet
- Dataset:
triplet_eval
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 1.0 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 5,270 training samples
- Columns:
sentence0
andsentence1
- Approximate statistics based on the first 1000 samples:
sentence0 sentence1 type string string details - min: 13 tokens
- mean: 100.1 tokens
- max: 128 tokens
- min: 9 tokens
- mean: 26.94 tokens
- max: 128 tokens
- Samples:
sentence0 sentence1 numero_de_documento_1 Esc. Pub de Traspaso De Vehículo placa: placa_de_vehiculo_1 propiedad de persona_1 para la venta a persona_3 por precio_1
El precio de venta del vehículo es precio_1
numero_de_documento_2 ESCRITURA PÚBLICA DE transacción de vehículo motorizado, PLACA Nº placa_de_vehiculo_3 OTORGADA POR: persona_4 en representación de: persona_2 A FAVOR DE: persona_4 PROPIETARIO DE LA empresa_unipersonal_1 POR EL MONTO DE precio_1 CONVENIDO.
El numero y año del documento es numero_de_documento_1
numero_de_documento_4 ESCRITURA PÚBLICA DE Adquisición De Un Vehículo, PLACA Nº placa_de_vehiculo_1 OTORGADA POR: persona_1 PROPIETARIO DE LA empresa_unipersonal_3 A FAVOR DE: persona_2 persona_3 Y persona_4 SOCIOS Y REPRESENTANTES DE LA sociedad_srl_4 POR LA SUMA DE precio_2
La escritura pública es sobre una venta de vehiculo de un vehículo.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 930 evaluation samples
- Columns:
sentence0
andsentence1
- Approximate statistics based on the first 930 samples:
sentence0 sentence1 type string string details - min: 19 tokens
- mean: 97.72 tokens
- max: 128 tokens
- min: 7 tokens
- mean: 25.75 tokens
- max: 128 tokens
- Samples:
sentence0 sentence1 numero_de_documento_5 ESCRITURA PÚBLICA DE TRANSACCIÓN DE VEHÍCULO MOTORIZADO, PLACA NRO. placa_de_vehiculo_1 SUSCRITA POR LOS SEÑORES: persona_2 persona_2 Y persona_1 EN BENEFICIO DE: persona_4 POR LA CANTIDAD DE precio_5
¿Quiénes suscribieron la transacción del vehículo motorizado?
numero_de_documento_1 ESCRITURA PÚBLICA DE adjudicacion de vehículo motorizado CONTRATANDO CONSIGO MISMO, PLACA DE CIRCULACIÓN Nº placa_de_vehiculo_3 QUE SUSCRIBE: persona_1 por si y en representación de: persona_4 A FAVOR DE SI MISMO EN CONFORMIDAD AL ART. codigo_1 DEL CODIGO CIVIL, POR EL PRECIO DE precio_1
¿Cuál es el precio del vehículo?
numero_de_documento_1 escritura pública de: Compraventa De Un Automóvil, placa_de_vehiculo_4 OTORGADO POR: persona_1 A FAVOR DE: persona_2 POR EL PRECIO DE precio_1
El comprador y nuevo propietario del vehiculo es persona_1
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 10per_device_eval_batch_size
: 20learning_rate
: 8e-06weight_decay
: 0.03max_grad_norm
: 0.3lr_scheduler_type
: cosinewarmup_ratio
: 0.2fp16
: Truedataloader_num_workers
: 1load_best_model_at_end
: Truedataloader_pin_memory
: False
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 10per_device_eval_batch_size
: 20per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 8e-06weight_decay
: 0.03adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 0.3num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.2warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 1dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Falsedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsehub_revision
: Nonegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseliger_kernel_config
: Noneeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportionalrouter_mapping
: {}learning_rate_mapping
: {}
Training Logs
Click to expand
Epoch | Step | Training Loss | Validation Loss | triplet_eval_cosine_accuracy |
---|---|---|---|---|
-1 | -1 | - | - | 0.5400 |
0.0095 | 5 | 2.4306 | - | - |
0.0190 | 10 | 2.3122 | - | - |
0.0285 | 15 | 2.2741 | - | - |
0.0380 | 20 | 2.0905 | - | - |
0.0474 | 25 | 2.2929 | - | - |
0.0095 | 5 | 2.1049 | - | - |
0.0190 | 10 | 2.0305 | - | - |
0.0285 | 15 | 1.7969 | - | - |
0.0380 | 20 | 1.7819 | - | - |
0.0474 | 25 | 2.046 | 2.3840 | 0.6750 |
0.0569 | 30 | 1.3209 | - | - |
0.0664 | 35 | 1.3396 | - | - |
0.0759 | 40 | 1.5147 | - | - |
0.0854 | 45 | 1.4947 | - | - |
0.0949 | 50 | 1.4001 | 1.9371 | 0.7750 |
0.1044 | 55 | 1.5686 | - | - |
0.1139 | 60 | 0.828 | - | - |
0.1233 | 65 | 1.5542 | - | - |
0.1328 | 70 | 1.4292 | - | - |
0.1423 | 75 | 0.8558 | 1.6839 | 0.8100 |
0.1518 | 80 | 1.1573 | - | - |
0.1613 | 85 | 0.9952 | - | - |
0.1708 | 90 | 1.1084 | - | - |
0.1803 | 95 | 1.2861 | - | - |
0.1898 | 100 | 1.3884 | 1.5355 | 0.8400 |
0.1992 | 105 | 1.1502 | - | - |
0.2087 | 110 | 1.2771 | - | - |
0.2182 | 115 | 1.1399 | - | - |
0.2277 | 120 | 1.0 | - | - |
0.2372 | 125 | 1.0145 | 1.4050 | 0.8500 |
0.2467 | 130 | 0.705 | - | - |
0.2562 | 135 | 0.684 | - | - |
0.2657 | 140 | 1.0563 | - | - |
0.2751 | 145 | 1.1791 | - | - |
0.2846 | 150 | 0.6746 | 1.3098 | 0.9000 |
0.2941 | 155 | 1.0281 | - | - |
0.3036 | 160 | 0.8901 | - | - |
0.3131 | 165 | 0.5872 | - | - |
0.3226 | 170 | 0.6582 | - | - |
0.3321 | 175 | 0.788 | 1.2584 | 0.8950 |
0.3416 | 180 | 0.7405 | - | - |
0.3510 | 185 | 0.7737 | - | - |
0.3605 | 190 | 0.8017 | - | - |
0.3700 | 195 | 0.849 | - | - |
0.3795 | 200 | 0.9972 | 1.1327 | 0.9400 |
0.3890 | 205 | 0.8374 | - | - |
0.3985 | 210 | 0.6933 | - | - |
0.4080 | 215 | 0.5667 | - | - |
0.4175 | 220 | 0.5733 | - | - |
0.4269 | 225 | 0.4814 | 1.1721 | 0.9450 |
0.4364 | 230 | 0.7727 | - | - |
0.4459 | 235 | 0.7623 | - | - |
0.4554 | 240 | 0.7466 | - | - |
0.4649 | 245 | 0.7489 | - | - |
0.4744 | 250 | 0.7185 | 1.0541 | 0.9500 |
0.4839 | 255 | 0.6422 | - | - |
0.4934 | 260 | 0.4478 | - | - |
0.5028 | 265 | 0.8566 | - | - |
0.5123 | 270 | 0.5825 | - | - |
0.5218 | 275 | 0.6335 | 1.0094 | 0.9550 |
0.5313 | 280 | 0.4719 | - | - |
0.5408 | 285 | 0.7613 | - | - |
0.5503 | 290 | 0.6041 | - | - |
0.5598 | 295 | 0.7514 | - | - |
0.5693 | 300 | 0.693 | 0.9468 | 0.9550 |
0.5787 | 305 | 0.6485 | - | - |
0.5882 | 310 | 0.4796 | - | - |
0.5977 | 315 | 0.3809 | - | - |
0.6072 | 320 | 0.602 | - | - |
0.6167 | 325 | 0.4706 | 0.9221 | 0.9650 |
0.6262 | 330 | 0.4818 | - | - |
0.6357 | 335 | 0.5331 | - | - |
0.6452 | 340 | 0.5715 | - | - |
0.6546 | 345 | 0.5022 | - | - |
0.6641 | 350 | 0.8457 | 0.9027 | 0.9500 |
0.6736 | 355 | 0.7912 | - | - |
0.6831 | 360 | 0.657 | - | - |
0.6926 | 365 | 0.496 | - | - |
0.7021 | 370 | 0.5524 | - | - |
0.7116 | 375 | 0.4065 | 0.8646 | 0.9750 |
0.7211 | 380 | 0.3708 | - | - |
0.7306 | 385 | 0.6628 | - | - |
0.7400 | 390 | 0.5983 | - | - |
0.7495 | 395 | 0.445 | - | - |
0.7590 | 400 | 0.6094 | 0.8604 | 0.9750 |
0.7685 | 405 | 0.3963 | - | - |
0.7780 | 410 | 0.6161 | - | - |
0.7875 | 415 | 0.3776 | - | - |
0.7970 | 420 | 0.6449 | - | - |
0.8065 | 425 | 0.5054 | 0.7672 | 0.9800 |
0.8159 | 430 | 0.5518 | - | - |
0.8254 | 435 | 0.3351 | - | - |
0.8349 | 440 | 0.6461 | - | - |
0.8444 | 445 | 0.3986 | - | - |
0.8539 | 450 | 0.5226 | 0.7484 | 0.9850 |
0.8634 | 455 | 0.7118 | - | - |
0.8729 | 460 | 0.4228 | - | - |
0.8824 | 465 | 0.6646 | - | - |
0.8918 | 470 | 0.3974 | - | - |
0.9013 | 475 | 0.4638 | 0.7319 | 0.9700 |
0.9108 | 480 | 0.3994 | - | - |
0.9203 | 485 | 0.351 | - | - |
0.9298 | 490 | 0.2993 | - | - |
0.9393 | 495 | 0.6136 | - | - |
0.9488 | 500 | 0.5763 | 0.7545 | 0.9700 |
0.9583 | 505 | 0.4826 | - | - |
0.9677 | 510 | 0.4333 | - | - |
0.9772 | 515 | 0.6736 | - | - |
0.9867 | 520 | 0.5241 | - | - |
0.9962 | 525 | 0.3101 | 0.6897 | 0.9650 |
1.0057 | 530 | 0.474 | - | - |
1.0152 | 535 | 0.2346 | - | - |
1.0247 | 540 | 0.3659 | - | - |
1.0342 | 545 | 0.3046 | - | - |
1.0436 | 550 | 0.4148 | 0.7027 | 0.9800 |
1.0531 | 555 | 0.321 | - | - |
1.0626 | 560 | 0.4315 | - | - |
1.0721 | 565 | 0.4838 | - | - |
1.0816 | 570 | 0.2886 | - | - |
1.0911 | 575 | 0.3718 | 0.6581 | 0.9800 |
1.1006 | 580 | 0.2237 | - | - |
1.1101 | 585 | 0.3343 | - | - |
1.1195 | 590 | 0.3573 | - | - |
1.1290 | 595 | 0.2421 | - | - |
1.1385 | 600 | 0.3315 | 0.6553 | 0.9750 |
1.1480 | 605 | 0.3258 | - | - |
1.1575 | 610 | 0.714 | - | - |
1.1670 | 615 | 0.244 | - | - |
1.1765 | 620 | 0.3899 | - | - |
1.1860 | 625 | 0.2789 | 0.6135 | 0.9850 |
1.1954 | 630 | 0.2721 | - | - |
1.2049 | 635 | 0.0957 | - | - |
1.2144 | 640 | 0.3631 | - | - |
1.2239 | 645 | 0.6304 | - | - |
1.2334 | 650 | 0.1841 | 0.6325 | 0.9800 |
1.2429 | 655 | 0.2118 | - | - |
1.2524 | 660 | 0.3037 | - | - |
1.2619 | 665 | 0.3958 | - | - |
1.2713 | 670 | 0.5982 | - | - |
1.2808 | 675 | 0.5016 | 0.6113 | 0.9850 |
1.2903 | 680 | 0.5266 | - | - |
1.2998 | 685 | 0.4622 | - | - |
1.3093 | 690 | 0.3678 | - | - |
1.3188 | 695 | 0.3591 | - | - |
1.3283 | 700 | 0.3461 | 0.5873 | 0.9800 |
1.3378 | 705 | 0.2499 | - | - |
1.3472 | 710 | 0.3621 | - | - |
1.3567 | 715 | 0.4742 | - | - |
1.3662 | 720 | 0.2846 | - | - |
1.3757 | 725 | 0.4233 | 0.5780 | 0.9850 |
1.3852 | 730 | 0.5183 | - | - |
1.3947 | 735 | 0.4594 | - | - |
1.4042 | 740 | 0.3213 | - | - |
1.4137 | 745 | 0.479 | - | - |
1.4231 | 750 | 0.244 | 0.5756 | 0.9800 |
1.4326 | 755 | 0.3029 | - | - |
1.4421 | 760 | 0.3128 | - | - |
1.4516 | 765 | 0.2308 | - | - |
1.4611 | 770 | 0.2453 | - | - |
1.4706 | 775 | 0.4089 | 0.5459 | 0.9850 |
1.4801 | 780 | 0.399 | - | - |
1.4896 | 785 | 0.3846 | - | - |
1.4991 | 790 | 0.2698 | - | - |
1.5085 | 795 | 0.7337 | - | - |
1.5180 | 800 | 0.4169 | 0.5220 | 0.9850 |
1.5275 | 805 | 0.2407 | - | - |
1.5370 | 810 | 0.0888 | - | - |
1.5465 | 815 | 0.4584 | - | - |
1.5560 | 820 | 0.2206 | - | - |
1.5655 | 825 | 0.2638 | 0.5339 | 0.9850 |
1.5750 | 830 | 0.3155 | - | - |
1.5844 | 835 | 0.2733 | - | - |
1.5939 | 840 | 0.3092 | - | - |
1.6034 | 845 | 0.3355 | - | - |
1.6129 | 850 | 0.1425 | 0.5274 | 0.9900 |
1.6224 | 855 | 0.2576 | - | - |
1.6319 | 860 | 0.3539 | - | - |
1.6414 | 865 | 0.3728 | - | - |
1.6509 | 870 | 0.3114 | - | - |
1.6603 | 875 | 0.3883 | 0.5148 | 0.9900 |
1.6698 | 880 | 0.1344 | - | - |
1.6793 | 885 | 0.2097 | - | - |
1.6888 | 890 | 0.1263 | - | - |
1.6983 | 895 | 0.2317 | - | - |
1.7078 | 900 | 0.2354 | 0.5078 | 0.9900 |
1.7173 | 905 | 0.2546 | - | - |
1.7268 | 910 | 0.1656 | - | - |
1.7362 | 915 | 0.5719 | - | - |
1.7457 | 920 | 0.3647 | - | - |
1.7552 | 925 | 0.2817 | 0.5032 | 0.9900 |
1.7647 | 930 | 0.2482 | - | - |
1.7742 | 935 | 0.3697 | - | - |
1.7837 | 940 | 0.2082 | - | - |
1.7932 | 945 | 0.2497 | - | - |
1.8027 | 950 | 0.1688 | 0.5051 | 0.9900 |
1.8121 | 955 | 0.4251 | - | - |
1.8216 | 960 | 0.3603 | - | - |
1.8311 | 965 | 0.4506 | - | - |
1.8406 | 970 | 0.2303 | - | - |
1.8501 | 975 | 0.4086 | 0.5111 | 0.9900 |
1.8596 | 980 | 0.3422 | - | - |
1.8691 | 985 | 0.0954 | - | - |
1.8786 | 990 | 0.3552 | - | - |
1.8880 | 995 | 0.4798 | - | - |
1.8975 | 1000 | 0.2623 | 0.4713 | 0.9950 |
1.9070 | 1005 | 0.2642 | - | - |
1.9165 | 1010 | 0.1423 | - | - |
1.9260 | 1015 | 0.3493 | - | - |
1.9355 | 1020 | 0.2362 | - | - |
1.9450 | 1025 | 0.1921 | 0.4608 | 0.9950 |
1.9545 | 1030 | 0.3555 | - | - |
1.9639 | 1035 | 0.1268 | - | - |
1.9734 | 1040 | 0.3715 | - | - |
1.9829 | 1045 | 0.5015 | - | - |
1.9924 | 1050 | 0.2288 | 0.4471 | 0.9950 |
2.0019 | 1055 | 0.2191 | - | - |
2.0114 | 1060 | 0.2769 | - | - |
2.0209 | 1065 | 0.2275 | - | - |
2.0304 | 1070 | 0.1573 | - | - |
2.0398 | 1075 | 0.1818 | 0.4448 | 0.9950 |
2.0493 | 1080 | 0.2495 | - | - |
2.0588 | 1085 | 0.1605 | - | - |
2.0683 | 1090 | 0.406 | - | - |
2.0778 | 1095 | 0.0975 | - | - |
2.0873 | 1100 | 0.1841 | 0.4441 | 0.9950 |
2.0968 | 1105 | 0.1031 | - | - |
2.1063 | 1110 | 0.1256 | - | - |
2.1157 | 1115 | 0.2786 | - | - |
2.1252 | 1120 | 0.1269 | - | - |
2.1347 | 1125 | 0.089 | 0.4454 | 0.9950 |
2.1442 | 1130 | 0.3174 | - | - |
2.1537 | 1135 | 0.1623 | - | - |
2.1632 | 1140 | 0.2372 | - | - |
2.1727 | 1145 | 0.2399 | - | - |
2.1822 | 1150 | 0.304 | 0.4508 | 0.9950 |
2.1917 | 1155 | 0.1913 | - | - |
2.2011 | 1160 | 0.1075 | - | - |
2.2106 | 1165 | 0.2845 | - | - |
2.2201 | 1170 | 0.1191 | - | - |
2.2296 | 1175 | 0.1083 | 0.4366 | 1.0 |
2.2391 | 1180 | 0.4736 | - | - |
2.2486 | 1185 | 0.2507 | - | - |
2.2581 | 1190 | 0.0838 | - | - |
2.2676 | 1195 | 0.1461 | - | - |
2.2770 | 1200 | 0.0672 | 0.4255 | 1.0 |
2.2865 | 1205 | 0.3276 | - | - |
2.2960 | 1210 | 0.2339 | - | - |
2.3055 | 1215 | 0.3573 | - | - |
2.3150 | 1220 | 0.2552 | - | - |
2.3245 | 1225 | 0.0565 | 0.4214 | 1.0 |
2.3340 | 1230 | 0.131 | - | - |
2.3435 | 1235 | 0.2276 | - | - |
2.3529 | 1240 | 0.2008 | - | - |
2.3624 | 1245 | 0.085 | - | - |
2.3719 | 1250 | 0.1554 | 0.4203 | 1.0 |
2.3814 | 1255 | 0.2493 | - | - |
2.3909 | 1260 | 0.2439 | - | - |
2.4004 | 1265 | 0.1253 | - | - |
2.4099 | 1270 | 0.2398 | - | - |
2.4194 | 1275 | 0.3121 | 0.4199 | 1.0 |
2.4288 | 1280 | 0.0742 | - | - |
2.4383 | 1285 | 0.1452 | - | - |
2.4478 | 1290 | 0.1388 | - | - |
2.4573 | 1295 | 0.2693 | - | - |
2.4668 | 1300 | 0.1332 | 0.4172 | 1.0 |
2.4763 | 1305 | 0.1463 | - | - |
2.4858 | 1310 | 0.2751 | - | - |
2.4953 | 1315 | 0.2274 | - | - |
2.5047 | 1320 | 0.1767 | - | - |
2.5142 | 1325 | 0.2019 | 0.4164 | 1.0 |
2.5237 | 1330 | 0.2877 | - | - |
2.5332 | 1335 | 0.2388 | - | - |
2.5427 | 1340 | 0.2267 | - | - |
2.5522 | 1345 | 0.1964 | - | - |
2.5617 | 1350 | 0.1779 | 0.4124 | 1.0 |
2.5712 | 1355 | 0.1913 | - | - |
2.5806 | 1360 | 0.2433 | - | - |
2.5901 | 1365 | 0.2963 | - | - |
2.5996 | 1370 | 0.1221 | - | - |
2.6091 | 1375 | 0.2104 | 0.4110 | 1.0 |
2.6186 | 1380 | 0.1383 | - | - |
2.6281 | 1385 | 0.1095 | - | - |
2.6376 | 1390 | 0.1891 | - | - |
2.6471 | 1395 | 0.171 | - | - |
2.6565 | 1400 | 0.1868 | 0.4102 | 1.0 |
2.6660 | 1405 | 0.0713 | - | - |
2.6755 | 1410 | 0.1479 | - | - |
2.6850 | 1415 | 0.1991 | - | - |
2.6945 | 1420 | 0.1648 | - | - |
2.7040 | 1425 | 0.2252 | 0.4097 | 1.0 |
2.7135 | 1430 | 0.3373 | - | - |
2.7230 | 1435 | 0.2842 | - | - |
2.7324 | 1440 | 0.2238 | - | - |
2.7419 | 1445 | 0.3285 | - | - |
2.7514 | 1450 | 0.1781 | 0.4097 | 1.0 |
2.7609 | 1455 | 0.2597 | - | - |
2.7704 | 1460 | 0.3764 | - | - |
2.7799 | 1465 | 0.1916 | - | - |
2.7894 | 1470 | 0.225 | - | - |
2.7989 | 1475 | 0.1697 | 0.4094 | 1.0 |
2.8083 | 1480 | 0.1214 | - | - |
2.8178 | 1485 | 0.2059 | - | - |
2.8273 | 1490 | 0.2136 | - | - |
2.8368 | 1495 | 0.2679 | - | - |
2.8463 | 1500 | 0.172 | 0.4092 | 1.0 |
2.8558 | 1505 | 0.1697 | - | - |
2.8653 | 1510 | 0.26 | - | - |
2.8748 | 1515 | 0.3535 | - | - |
2.8843 | 1520 | 0.1989 | - | - |
2.8937 | 1525 | 0.1571 | 0.4089 | 1.0 |
2.9032 | 1530 | 0.2165 | - | - |
2.9127 | 1535 | 0.2085 | - | - |
2.9222 | 1540 | 0.2513 | - | - |
2.9317 | 1545 | 0.2036 | - | - |
2.9412 | 1550 | 0.0774 | 0.4088 | 1.0 |
2.9507 | 1555 | 0.1856 | - | - |
2.9602 | 1560 | 0.3345 | - | - |
2.9696 | 1565 | 0.2177 | - | - |
2.9791 | 1570 | 0.1433 | - | - |
2.9886 | 1575 | 0.2396 | 0.4088 | 1.0 |
2.9981 | 1580 | 0.1049 | - | - |
-1 | -1 | - | - | 1.0 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.13
- Sentence Transformers: 5.0.0
- Transformers: 4.54.0
- PyTorch: 2.6.0+cu124
- Accelerate: 1.9.0
- Datasets: 4.0.0
- Tokenizers: 0.21.2
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 15
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support