distiluse-es-legal-embeddings

This is a sentence-transformers model finetuned from sentence-transformers/distiluse-base-multilingual-cased-v2. It maps sentences & paragraphs to a 512-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False, 'architecture': 'DistilBertModel'})
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Dense({'in_features': 768, 'out_features': 512, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("luiggy2620/distiluse-es-legal-balanced-final")
# Run inference
sentences = [
    'TERCERA. OBJETO. LA VENDEDORA de su libre y espontánea voluntad, sin que medie presión alguna, dolo u otro vicio de consentimiento y por convenir así a sus intereses, da en venta real y definitiva la totalidad del inmueble a LA COMPRADORA, por el precio bilateralmente convenido de precio_1 que LA VENDEDORA, declara recibir en su integridad, en efectivo, en moneda de curso legal y a su entera satisfacción a tiempo de suscribir el presente contrato.',
    '¿Qué vende la vendedora a la compradora?',
    'Qué tipos de sellos aparecen al margen de la minuta?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 512]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[ 1.0000,  0.3758, -0.0276],
#         [ 0.3758,  1.0000, -0.0335],
#         [-0.0276, -0.0335,  1.0000]])

Evaluation

Metrics

Triplet

Metric Value
cosine_accuracy 1.0

Training Details

Training Dataset

Unnamed Dataset

  • Size: 5,270 training samples
  • Columns: sentence0 and sentence1
  • Approximate statistics based on the first 1000 samples:
    sentence0 sentence1
    type string string
    details
    • min: 13 tokens
    • mean: 100.1 tokens
    • max: 128 tokens
    • min: 9 tokens
    • mean: 26.94 tokens
    • max: 128 tokens
  • Samples:
    sentence0 sentence1
    numero_de_documento_1 Esc. Pub de Traspaso De Vehículo placa: placa_de_vehiculo_1 propiedad de persona_1 para la venta a persona_3 por precio_1 El precio de venta del vehículo es precio_1
    numero_de_documento_2 ESCRITURA PÚBLICA DE transacción de vehículo motorizado, PLACA Nº placa_de_vehiculo_3 OTORGADA POR: persona_4 en representación de: persona_2 A FAVOR DE: persona_4 PROPIETARIO DE LA empresa_unipersonal_1 POR EL MONTO DE precio_1 CONVENIDO. El numero y año del documento es numero_de_documento_1
    numero_de_documento_4 ESCRITURA PÚBLICA DE Adquisición De Un Vehículo, PLACA Nº placa_de_vehiculo_1 OTORGADA POR: persona_1 PROPIETARIO DE LA empresa_unipersonal_3 A FAVOR DE: persona_2 persona_3 Y persona_4 SOCIOS Y REPRESENTANTES DE LA sociedad_srl_4 POR LA SUMA DE precio_2 La escritura pública es sobre una venta de vehiculo de un vehículo.
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 930 evaluation samples
  • Columns: sentence0 and sentence1
  • Approximate statistics based on the first 930 samples:
    sentence0 sentence1
    type string string
    details
    • min: 19 tokens
    • mean: 97.72 tokens
    • max: 128 tokens
    • min: 7 tokens
    • mean: 25.75 tokens
    • max: 128 tokens
  • Samples:
    sentence0 sentence1
    numero_de_documento_5 ESCRITURA PÚBLICA DE TRANSACCIÓN DE VEHÍCULO MOTORIZADO, PLACA NRO. placa_de_vehiculo_1 SUSCRITA POR LOS SEÑORES: persona_2 persona_2 Y persona_1 EN BENEFICIO DE: persona_4 POR LA CANTIDAD DE precio_5 ¿Quiénes suscribieron la transacción del vehículo motorizado?
    numero_de_documento_1 ESCRITURA PÚBLICA DE adjudicacion de vehículo motorizado CONTRATANDO CONSIGO MISMO, PLACA DE CIRCULACIÓN Nº placa_de_vehiculo_3 QUE SUSCRIBE: persona_1 por si y en representación de: persona_4 A FAVOR DE SI MISMO EN CONFORMIDAD AL ART. codigo_1 DEL CODIGO CIVIL, POR EL PRECIO DE precio_1 ¿Cuál es el precio del vehículo?
    numero_de_documento_1 escritura pública de: Compraventa De Un Automóvil, placa_de_vehiculo_4 OTORGADO POR: persona_1 A FAVOR DE: persona_2 POR EL PRECIO DE precio_1 El comprador y nuevo propietario del vehiculo es persona_1
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 10
  • per_device_eval_batch_size: 20
  • learning_rate: 8e-06
  • weight_decay: 0.03
  • max_grad_norm: 0.3
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.2
  • fp16: True
  • dataloader_num_workers: 1
  • load_best_model_at_end: True
  • dataloader_pin_memory: False

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 10
  • per_device_eval_batch_size: 20
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 8e-06
  • weight_decay: 0.03
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 0.3
  • num_train_epochs: 3
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.2
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 1
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: False
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • hub_revision: None
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • liger_kernel_config: None
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Click to expand
Epoch Step Training Loss Validation Loss triplet_eval_cosine_accuracy
-1 -1 - - 0.5400
0.0095 5 2.4306 - -
0.0190 10 2.3122 - -
0.0285 15 2.2741 - -
0.0380 20 2.0905 - -
0.0474 25 2.2929 - -
0.0095 5 2.1049 - -
0.0190 10 2.0305 - -
0.0285 15 1.7969 - -
0.0380 20 1.7819 - -
0.0474 25 2.046 2.3840 0.6750
0.0569 30 1.3209 - -
0.0664 35 1.3396 - -
0.0759 40 1.5147 - -
0.0854 45 1.4947 - -
0.0949 50 1.4001 1.9371 0.7750
0.1044 55 1.5686 - -
0.1139 60 0.828 - -
0.1233 65 1.5542 - -
0.1328 70 1.4292 - -
0.1423 75 0.8558 1.6839 0.8100
0.1518 80 1.1573 - -
0.1613 85 0.9952 - -
0.1708 90 1.1084 - -
0.1803 95 1.2861 - -
0.1898 100 1.3884 1.5355 0.8400
0.1992 105 1.1502 - -
0.2087 110 1.2771 - -
0.2182 115 1.1399 - -
0.2277 120 1.0 - -
0.2372 125 1.0145 1.4050 0.8500
0.2467 130 0.705 - -
0.2562 135 0.684 - -
0.2657 140 1.0563 - -
0.2751 145 1.1791 - -
0.2846 150 0.6746 1.3098 0.9000
0.2941 155 1.0281 - -
0.3036 160 0.8901 - -
0.3131 165 0.5872 - -
0.3226 170 0.6582 - -
0.3321 175 0.788 1.2584 0.8950
0.3416 180 0.7405 - -
0.3510 185 0.7737 - -
0.3605 190 0.8017 - -
0.3700 195 0.849 - -
0.3795 200 0.9972 1.1327 0.9400
0.3890 205 0.8374 - -
0.3985 210 0.6933 - -
0.4080 215 0.5667 - -
0.4175 220 0.5733 - -
0.4269 225 0.4814 1.1721 0.9450
0.4364 230 0.7727 - -
0.4459 235 0.7623 - -
0.4554 240 0.7466 - -
0.4649 245 0.7489 - -
0.4744 250 0.7185 1.0541 0.9500
0.4839 255 0.6422 - -
0.4934 260 0.4478 - -
0.5028 265 0.8566 - -
0.5123 270 0.5825 - -
0.5218 275 0.6335 1.0094 0.9550
0.5313 280 0.4719 - -
0.5408 285 0.7613 - -
0.5503 290 0.6041 - -
0.5598 295 0.7514 - -
0.5693 300 0.693 0.9468 0.9550
0.5787 305 0.6485 - -
0.5882 310 0.4796 - -
0.5977 315 0.3809 - -
0.6072 320 0.602 - -
0.6167 325 0.4706 0.9221 0.9650
0.6262 330 0.4818 - -
0.6357 335 0.5331 - -
0.6452 340 0.5715 - -
0.6546 345 0.5022 - -
0.6641 350 0.8457 0.9027 0.9500
0.6736 355 0.7912 - -
0.6831 360 0.657 - -
0.6926 365 0.496 - -
0.7021 370 0.5524 - -
0.7116 375 0.4065 0.8646 0.9750
0.7211 380 0.3708 - -
0.7306 385 0.6628 - -
0.7400 390 0.5983 - -
0.7495 395 0.445 - -
0.7590 400 0.6094 0.8604 0.9750
0.7685 405 0.3963 - -
0.7780 410 0.6161 - -
0.7875 415 0.3776 - -
0.7970 420 0.6449 - -
0.8065 425 0.5054 0.7672 0.9800
0.8159 430 0.5518 - -
0.8254 435 0.3351 - -
0.8349 440 0.6461 - -
0.8444 445 0.3986 - -
0.8539 450 0.5226 0.7484 0.9850
0.8634 455 0.7118 - -
0.8729 460 0.4228 - -
0.8824 465 0.6646 - -
0.8918 470 0.3974 - -
0.9013 475 0.4638 0.7319 0.9700
0.9108 480 0.3994 - -
0.9203 485 0.351 - -
0.9298 490 0.2993 - -
0.9393 495 0.6136 - -
0.9488 500 0.5763 0.7545 0.9700
0.9583 505 0.4826 - -
0.9677 510 0.4333 - -
0.9772 515 0.6736 - -
0.9867 520 0.5241 - -
0.9962 525 0.3101 0.6897 0.9650
1.0057 530 0.474 - -
1.0152 535 0.2346 - -
1.0247 540 0.3659 - -
1.0342 545 0.3046 - -
1.0436 550 0.4148 0.7027 0.9800
1.0531 555 0.321 - -
1.0626 560 0.4315 - -
1.0721 565 0.4838 - -
1.0816 570 0.2886 - -
1.0911 575 0.3718 0.6581 0.9800
1.1006 580 0.2237 - -
1.1101 585 0.3343 - -
1.1195 590 0.3573 - -
1.1290 595 0.2421 - -
1.1385 600 0.3315 0.6553 0.9750
1.1480 605 0.3258 - -
1.1575 610 0.714 - -
1.1670 615 0.244 - -
1.1765 620 0.3899 - -
1.1860 625 0.2789 0.6135 0.9850
1.1954 630 0.2721 - -
1.2049 635 0.0957 - -
1.2144 640 0.3631 - -
1.2239 645 0.6304 - -
1.2334 650 0.1841 0.6325 0.9800
1.2429 655 0.2118 - -
1.2524 660 0.3037 - -
1.2619 665 0.3958 - -
1.2713 670 0.5982 - -
1.2808 675 0.5016 0.6113 0.9850
1.2903 680 0.5266 - -
1.2998 685 0.4622 - -
1.3093 690 0.3678 - -
1.3188 695 0.3591 - -
1.3283 700 0.3461 0.5873 0.9800
1.3378 705 0.2499 - -
1.3472 710 0.3621 - -
1.3567 715 0.4742 - -
1.3662 720 0.2846 - -
1.3757 725 0.4233 0.5780 0.9850
1.3852 730 0.5183 - -
1.3947 735 0.4594 - -
1.4042 740 0.3213 - -
1.4137 745 0.479 - -
1.4231 750 0.244 0.5756 0.9800
1.4326 755 0.3029 - -
1.4421 760 0.3128 - -
1.4516 765 0.2308 - -
1.4611 770 0.2453 - -
1.4706 775 0.4089 0.5459 0.9850
1.4801 780 0.399 - -
1.4896 785 0.3846 - -
1.4991 790 0.2698 - -
1.5085 795 0.7337 - -
1.5180 800 0.4169 0.5220 0.9850
1.5275 805 0.2407 - -
1.5370 810 0.0888 - -
1.5465 815 0.4584 - -
1.5560 820 0.2206 - -
1.5655 825 0.2638 0.5339 0.9850
1.5750 830 0.3155 - -
1.5844 835 0.2733 - -
1.5939 840 0.3092 - -
1.6034 845 0.3355 - -
1.6129 850 0.1425 0.5274 0.9900
1.6224 855 0.2576 - -
1.6319 860 0.3539 - -
1.6414 865 0.3728 - -
1.6509 870 0.3114 - -
1.6603 875 0.3883 0.5148 0.9900
1.6698 880 0.1344 - -
1.6793 885 0.2097 - -
1.6888 890 0.1263 - -
1.6983 895 0.2317 - -
1.7078 900 0.2354 0.5078 0.9900
1.7173 905 0.2546 - -
1.7268 910 0.1656 - -
1.7362 915 0.5719 - -
1.7457 920 0.3647 - -
1.7552 925 0.2817 0.5032 0.9900
1.7647 930 0.2482 - -
1.7742 935 0.3697 - -
1.7837 940 0.2082 - -
1.7932 945 0.2497 - -
1.8027 950 0.1688 0.5051 0.9900
1.8121 955 0.4251 - -
1.8216 960 0.3603 - -
1.8311 965 0.4506 - -
1.8406 970 0.2303 - -
1.8501 975 0.4086 0.5111 0.9900
1.8596 980 0.3422 - -
1.8691 985 0.0954 - -
1.8786 990 0.3552 - -
1.8880 995 0.4798 - -
1.8975 1000 0.2623 0.4713 0.9950
1.9070 1005 0.2642 - -
1.9165 1010 0.1423 - -
1.9260 1015 0.3493 - -
1.9355 1020 0.2362 - -
1.9450 1025 0.1921 0.4608 0.9950
1.9545 1030 0.3555 - -
1.9639 1035 0.1268 - -
1.9734 1040 0.3715 - -
1.9829 1045 0.5015 - -
1.9924 1050 0.2288 0.4471 0.9950
2.0019 1055 0.2191 - -
2.0114 1060 0.2769 - -
2.0209 1065 0.2275 - -
2.0304 1070 0.1573 - -
2.0398 1075 0.1818 0.4448 0.9950
2.0493 1080 0.2495 - -
2.0588 1085 0.1605 - -
2.0683 1090 0.406 - -
2.0778 1095 0.0975 - -
2.0873 1100 0.1841 0.4441 0.9950
2.0968 1105 0.1031 - -
2.1063 1110 0.1256 - -
2.1157 1115 0.2786 - -
2.1252 1120 0.1269 - -
2.1347 1125 0.089 0.4454 0.9950
2.1442 1130 0.3174 - -
2.1537 1135 0.1623 - -
2.1632 1140 0.2372 - -
2.1727 1145 0.2399 - -
2.1822 1150 0.304 0.4508 0.9950
2.1917 1155 0.1913 - -
2.2011 1160 0.1075 - -
2.2106 1165 0.2845 - -
2.2201 1170 0.1191 - -
2.2296 1175 0.1083 0.4366 1.0
2.2391 1180 0.4736 - -
2.2486 1185 0.2507 - -
2.2581 1190 0.0838 - -
2.2676 1195 0.1461 - -
2.2770 1200 0.0672 0.4255 1.0
2.2865 1205 0.3276 - -
2.2960 1210 0.2339 - -
2.3055 1215 0.3573 - -
2.3150 1220 0.2552 - -
2.3245 1225 0.0565 0.4214 1.0
2.3340 1230 0.131 - -
2.3435 1235 0.2276 - -
2.3529 1240 0.2008 - -
2.3624 1245 0.085 - -
2.3719 1250 0.1554 0.4203 1.0
2.3814 1255 0.2493 - -
2.3909 1260 0.2439 - -
2.4004 1265 0.1253 - -
2.4099 1270 0.2398 - -
2.4194 1275 0.3121 0.4199 1.0
2.4288 1280 0.0742 - -
2.4383 1285 0.1452 - -
2.4478 1290 0.1388 - -
2.4573 1295 0.2693 - -
2.4668 1300 0.1332 0.4172 1.0
2.4763 1305 0.1463 - -
2.4858 1310 0.2751 - -
2.4953 1315 0.2274 - -
2.5047 1320 0.1767 - -
2.5142 1325 0.2019 0.4164 1.0
2.5237 1330 0.2877 - -
2.5332 1335 0.2388 - -
2.5427 1340 0.2267 - -
2.5522 1345 0.1964 - -
2.5617 1350 0.1779 0.4124 1.0
2.5712 1355 0.1913 - -
2.5806 1360 0.2433 - -
2.5901 1365 0.2963 - -
2.5996 1370 0.1221 - -
2.6091 1375 0.2104 0.4110 1.0
2.6186 1380 0.1383 - -
2.6281 1385 0.1095 - -
2.6376 1390 0.1891 - -
2.6471 1395 0.171 - -
2.6565 1400 0.1868 0.4102 1.0
2.6660 1405 0.0713 - -
2.6755 1410 0.1479 - -
2.6850 1415 0.1991 - -
2.6945 1420 0.1648 - -
2.7040 1425 0.2252 0.4097 1.0
2.7135 1430 0.3373 - -
2.7230 1435 0.2842 - -
2.7324 1440 0.2238 - -
2.7419 1445 0.3285 - -
2.7514 1450 0.1781 0.4097 1.0
2.7609 1455 0.2597 - -
2.7704 1460 0.3764 - -
2.7799 1465 0.1916 - -
2.7894 1470 0.225 - -
2.7989 1475 0.1697 0.4094 1.0
2.8083 1480 0.1214 - -
2.8178 1485 0.2059 - -
2.8273 1490 0.2136 - -
2.8368 1495 0.2679 - -
2.8463 1500 0.172 0.4092 1.0
2.8558 1505 0.1697 - -
2.8653 1510 0.26 - -
2.8748 1515 0.3535 - -
2.8843 1520 0.1989 - -
2.8937 1525 0.1571 0.4089 1.0
2.9032 1530 0.2165 - -
2.9127 1535 0.2085 - -
2.9222 1540 0.2513 - -
2.9317 1545 0.2036 - -
2.9412 1550 0.0774 0.4088 1.0
2.9507 1555 0.1856 - -
2.9602 1560 0.3345 - -
2.9696 1565 0.2177 - -
2.9791 1570 0.1433 - -
2.9886 1575 0.2396 0.4088 1.0
2.9981 1580 0.1049 - -
-1 -1 - - 1.0
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.11.13
  • Sentence Transformers: 5.0.0
  • Transformers: 4.54.0
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.9.0
  • Datasets: 4.0.0
  • Tokenizers: 0.21.2

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
15
Safetensors
Model size
135M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for luiggy2620/distiluse-es-legal-balanced-final

Evaluation results