SentenceTransformer based on BAAI/bge-small-en-v1.5
This is a sentence-transformers model finetuned from BAAI/bge-small-en-v1.5. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-small-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Market news from [DATES]',
'[{"get_news_articles(None,None,None,\'<DATES>\')": "news_data"}, {"get_attribute([\'SPY\'],[\'returns\'],\'<DATES>\')":"SPY_returns"}, {"get_attribute([\'DIA\'],[\'returns\'],\'<DATES>\')":"DIA_returns"}, {"get_attribute([\'QQQ\'],[\'returns\'],\'<DATES>\')":"QQQ_returns"}]',
'[{"get_dividend_history([\'<TICKER>\'],None)": "<TICKER>_dividend_history"}]',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy@1 | 0.7277 |
| cosine_accuracy@3 | 0.933 |
| cosine_accuracy@5 | 0.9643 |
| cosine_accuracy@10 | 0.9911 |
| cosine_precision@1 | 0.7277 |
| cosine_precision@3 | 0.311 |
| cosine_precision@5 | 0.1929 |
| cosine_precision@10 | 0.0991 |
| cosine_recall@1 | 0.0202 |
| cosine_recall@3 | 0.0259 |
| cosine_recall@5 | 0.0268 |
| cosine_recall@10 | 0.0275 |
| cosine_ndcg@10 | 0.1915 |
| cosine_mrr@10 | 0.8297 |
| cosine_map@100 | 0.0231 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 1,327 training samples
- Columns:
sentence_0andsentence_1 - Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 type string string details - min: 4 tokens
- mean: 13.03 tokens
- max: 35 tokens
- min: 20 tokens
- mean: 81.5 tokens
- max: 279 tokens
- Samples:
sentence_0 sentence_1 show my holding[{"get_portfolio(['marketValue'],True,None)": "portfolio"}, {"aggregate('portfolio','ticker','marketValue','sum',None)": "total_value"}]what are my portfolios holdings[{"get_portfolio(['marketValue'],True,None)": "portfolio"}, {"aggregate('portfolio','ticker','marketValue','sum',None)": "total_value"}]Provide a summary of my investments[{"get_portfolio(['marketValue'],True,None)": "portfolio"}, {"aggregate('portfolio','ticker','marketValue','sum',None)": "total_value"}] - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 10per_device_eval_batch_size: 10num_train_epochs: 6multi_dataset_batch_sampler: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 10per_device_eval_batch_size: 10per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 6max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size: 0fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robin
Training Logs
Click to expand
| Epoch | Step | Training Loss | cosine_ndcg@10 |
|---|---|---|---|
| 0.0150 | 2 | - | 0.0835 |
| 0.0301 | 4 | - | 0.0837 |
| 0.0451 | 6 | - | 0.0846 |
| 0.0602 | 8 | - | 0.0864 |
| 0.0752 | 10 | - | 0.0886 |
| 0.0902 | 12 | - | 0.0907 |
| 0.1053 | 14 | - | 0.0937 |
| 0.1203 | 16 | - | 0.0976 |
| 0.1353 | 18 | - | 0.1018 |
| 0.1504 | 20 | - | 0.1068 |
| 0.1654 | 22 | - | 0.1113 |
| 0.1805 | 24 | - | 0.1176 |
| 0.1955 | 26 | - | 0.1208 |
| 0.2105 | 28 | - | 0.1231 |
| 0.2256 | 30 | - | 0.1256 |
| 0.2406 | 32 | - | 0.1281 |
| 0.2556 | 34 | - | 0.1302 |
| 0.2707 | 36 | - | 0.1320 |
| 0.2857 | 38 | - | 0.1335 |
| 0.3008 | 40 | - | 0.1342 |
| 0.3158 | 42 | - | 0.1363 |
| 0.3308 | 44 | - | 0.1380 |
| 0.3459 | 46 | - | 0.1393 |
| 0.3609 | 48 | - | 0.1413 |
| 0.3759 | 50 | - | 0.1424 |
| 0.3910 | 52 | - | 0.1434 |
| 0.4060 | 54 | - | 0.1452 |
| 0.4211 | 56 | - | 0.1455 |
| 0.4361 | 58 | - | 0.1467 |
| 0.4511 | 60 | - | 0.1480 |
| 0.4662 | 62 | - | 0.1493 |
| 0.4812 | 64 | - | 0.1504 |
| 0.4962 | 66 | - | 0.1512 |
| 0.5113 | 68 | - | 0.1531 |
| 0.5263 | 70 | - | 0.1538 |
| 0.5414 | 72 | - | 0.1549 |
| 0.5564 | 74 | - | 0.1557 |
| 0.5714 | 76 | - | 0.1570 |
| 0.5865 | 78 | - | 0.1578 |
| 0.6015 | 80 | - | 0.1586 |
| 0.6165 | 82 | - | 0.1589 |
| 0.6316 | 84 | - | 0.1596 |
| 0.6466 | 86 | - | 0.1597 |
| 0.6617 | 88 | - | 0.1607 |
| 0.6767 | 90 | - | 0.1612 |
| 0.6917 | 92 | - | 0.1626 |
| 0.7068 | 94 | - | 0.1632 |
| 0.7218 | 96 | - | 0.1631 |
| 0.7368 | 98 | - | 0.1634 |
| 0.7519 | 100 | - | 0.1639 |
| 0.7669 | 102 | - | 0.1638 |
| 0.7820 | 104 | - | 0.1645 |
| 0.7970 | 106 | - | 0.1648 |
| 0.8120 | 108 | - | 0.1646 |
| 0.8271 | 110 | - | 0.1651 |
| 0.8421 | 112 | - | 0.1652 |
| 0.8571 | 114 | - | 0.1656 |
| 0.8722 | 116 | - | 0.1660 |
| 0.8872 | 118 | - | 0.1670 |
| 0.9023 | 120 | - | 0.1674 |
| 0.9173 | 122 | - | 0.1684 |
| 0.9323 | 124 | - | 0.1682 |
| 0.9474 | 126 | - | 0.1687 |
| 0.9624 | 128 | - | 0.1691 |
| 0.9774 | 130 | - | 0.1689 |
| 0.9925 | 132 | - | 0.1693 |
| 1.0 | 133 | - | 0.1696 |
| 1.0075 | 134 | - | 0.1696 |
| 1.0226 | 136 | - | 0.1696 |
| 1.0376 | 138 | - | 0.1694 |
| 1.0526 | 140 | - | 0.1698 |
| 1.0677 | 142 | - | 0.1706 |
| 1.0827 | 144 | - | 0.1711 |
| 1.0977 | 146 | - | 0.1714 |
| 1.1128 | 148 | - | 0.1719 |
| 1.1278 | 150 | - | 0.1720 |
| 1.1429 | 152 | - | 0.1721 |
| 1.1579 | 154 | - | 0.1718 |
| 1.1729 | 156 | - | 0.1722 |
| 1.1880 | 158 | - | 0.1726 |
| 1.2030 | 160 | - | 0.1731 |
| 1.2180 | 162 | - | 0.1740 |
| 1.2331 | 164 | - | 0.1742 |
| 1.2481 | 166 | - | 0.1751 |
| 1.2632 | 168 | - | 0.1754 |
| 1.2782 | 170 | - | 0.1756 |
| 1.2932 | 172 | - | 0.1757 |
| 1.3083 | 174 | - | 0.1765 |
| 1.3233 | 176 | - | 0.1764 |
| 1.3383 | 178 | - | 0.1764 |
| 1.3534 | 180 | - | 0.1766 |
| 1.3684 | 182 | - | 0.1774 |
| 1.3835 | 184 | - | 0.1771 |
| 1.3985 | 186 | - | 0.1767 |
| 1.4135 | 188 | - | 0.1769 |
| 1.4286 | 190 | - | 0.1762 |
| 1.4436 | 192 | - | 0.1762 |
| 1.4586 | 194 | - | 0.1764 |
| 1.4737 | 196 | - | 0.1773 |
| 1.4887 | 198 | - | 0.1775 |
| 1.5038 | 200 | - | 0.1776 |
| 1.5188 | 202 | - | 0.1778 |
| 1.5338 | 204 | - | 0.1778 |
| 1.5489 | 206 | - | 0.1779 |
| 1.5639 | 208 | - | 0.1775 |
| 1.5789 | 210 | - | 0.1777 |
| 1.5940 | 212 | - | 0.1780 |
| 1.6090 | 214 | - | 0.1777 |
| 1.6241 | 216 | - | 0.1783 |
| 1.6391 | 218 | - | 0.1783 |
| 1.6541 | 220 | - | 0.1794 |
| 1.6692 | 222 | - | 0.1792 |
| 1.6842 | 224 | - | 0.1795 |
| 1.6992 | 226 | - | 0.1798 |
| 1.7143 | 228 | - | 0.1794 |
| 1.7293 | 230 | - | 0.1797 |
| 1.7444 | 232 | - | 0.1804 |
| 1.7594 | 234 | - | 0.1803 |
| 1.7744 | 236 | - | 0.1800 |
| 1.7895 | 238 | - | 0.1802 |
| 1.8045 | 240 | - | 0.1808 |
| 1.8195 | 242 | - | 0.1804 |
| 1.8346 | 244 | - | 0.1797 |
| 1.8496 | 246 | - | 0.1806 |
| 1.8647 | 248 | - | 0.1808 |
| 1.8797 | 250 | - | 0.1810 |
| 1.8947 | 252 | - | 0.1810 |
| 1.9098 | 254 | - | 0.1815 |
| 1.9248 | 256 | - | 0.1822 |
| 1.9398 | 258 | - | 0.1821 |
| 1.9549 | 260 | - | 0.1827 |
| 1.9699 | 262 | - | 0.1822 |
| 1.9850 | 264 | - | 0.1826 |
| 2.0 | 266 | - | 0.1829 |
| 2.0150 | 268 | - | 0.1826 |
| 2.0301 | 270 | - | 0.1824 |
| 2.0451 | 272 | - | 0.1829 |
| 2.0602 | 274 | - | 0.1832 |
| 2.0752 | 276 | - | 0.1830 |
| 2.0902 | 278 | - | 0.1836 |
| 2.1053 | 280 | - | 0.1841 |
| 2.1203 | 282 | - | 0.1844 |
| 2.1353 | 284 | - | 0.1843 |
| 2.1504 | 286 | - | 0.1842 |
| 2.1654 | 288 | - | 0.1829 |
| 2.1805 | 290 | - | 0.1827 |
| 2.1955 | 292 | - | 0.1825 |
| 2.2105 | 294 | - | 0.1820 |
| 2.2256 | 296 | - | 0.1821 |
| 2.2406 | 298 | - | 0.1822 |
| 2.2556 | 300 | - | 0.1822 |
| 2.2707 | 302 | - | 0.1820 |
| 2.2857 | 304 | - | 0.1823 |
| 2.3008 | 306 | - | 0.1817 |
| 2.3158 | 308 | - | 0.1827 |
| 2.3308 | 310 | - | 0.1831 |
| 2.3459 | 312 | - | 0.1826 |
| 2.3609 | 314 | - | 0.1833 |
| 2.3759 | 316 | - | 0.1834 |
| 2.3910 | 318 | - | 0.1835 |
| 2.4060 | 320 | - | 0.1840 |
| 2.4211 | 322 | - | 0.1849 |
| 2.4361 | 324 | - | 0.1850 |
| 2.4511 | 326 | - | 0.1850 |
| 2.4662 | 328 | - | 0.1847 |
| 2.4812 | 330 | - | 0.1850 |
| 2.4962 | 332 | - | 0.1854 |
| 2.5113 | 334 | - | 0.1855 |
| 2.5263 | 336 | - | 0.1855 |
| 2.5414 | 338 | - | 0.1857 |
| 2.5564 | 340 | - | 0.1856 |
| 2.5714 | 342 | - | 0.1858 |
| 2.5865 | 344 | - | 0.1859 |
| 2.6015 | 346 | - | 0.1858 |
| 2.6165 | 348 | - | 0.1857 |
| 2.6316 | 350 | - | 0.1858 |
| 2.6466 | 352 | - | 0.1862 |
| 2.6617 | 354 | - | 0.1862 |
| 2.6767 | 356 | - | 0.1866 |
| 2.6917 | 358 | - | 0.1865 |
| 2.7068 | 360 | - | 0.1864 |
| 2.7218 | 362 | - | 0.1863 |
| 2.7368 | 364 | - | 0.1869 |
| 2.7519 | 366 | - | 0.1865 |
| 2.7669 | 368 | - | 0.1866 |
| 2.7820 | 370 | - | 0.1866 |
| 2.7970 | 372 | - | 0.1870 |
| 2.8120 | 374 | - | 0.1870 |
| 2.8271 | 376 | - | 0.1869 |
| 2.8421 | 378 | - | 0.1870 |
| 2.8571 | 380 | - | 0.1871 |
| 2.8722 | 382 | - | 0.1875 |
| 2.8872 | 384 | - | 0.1877 |
| 2.9023 | 386 | - | 0.1882 |
| 2.9173 | 388 | - | 0.1884 |
| 2.9323 | 390 | - | 0.1882 |
| 2.9474 | 392 | - | 0.1882 |
| 2.9624 | 394 | - | 0.1887 |
| 2.9774 | 396 | - | 0.1889 |
| 2.9925 | 398 | - | 0.1888 |
| 3.0 | 399 | - | 0.1888 |
| 3.0075 | 400 | - | 0.1885 |
| 3.0226 | 402 | - | 0.1886 |
| 3.0376 | 404 | - | 0.1887 |
| 3.0526 | 406 | - | 0.1886 |
| 3.0677 | 408 | - | 0.1885 |
| 3.0827 | 410 | - | 0.1883 |
| 3.0977 | 412 | - | 0.1886 |
| 3.1128 | 414 | - | 0.1883 |
| 3.1278 | 416 | - | 0.1888 |
| 3.1429 | 418 | - | 0.1884 |
| 3.1579 | 420 | - | 0.1879 |
| 3.1729 | 422 | - | 0.1880 |
| 3.1880 | 424 | - | 0.1881 |
| 3.2030 | 426 | - | 0.1881 |
| 3.2180 | 428 | - | 0.1878 |
| 3.2331 | 430 | - | 0.1879 |
| 3.2481 | 432 | - | 0.1882 |
| 3.2632 | 434 | - | 0.1881 |
| 3.2782 | 436 | - | 0.1884 |
| 3.2932 | 438 | - | 0.1880 |
| 3.3083 | 440 | - | 0.1878 |
| 3.3233 | 442 | - | 0.1879 |
| 3.3383 | 444 | - | 0.1882 |
| 3.3534 | 446 | - | 0.1879 |
| 3.3684 | 448 | - | 0.1877 |
| 3.3835 | 450 | - | 0.1877 |
| 3.3985 | 452 | - | 0.1876 |
| 3.4135 | 454 | - | 0.1876 |
| 3.4286 | 456 | - | 0.1870 |
| 3.4436 | 458 | - | 0.1871 |
| 3.4586 | 460 | - | 0.1870 |
| 3.4737 | 462 | - | 0.1867 |
| 3.4887 | 464 | - | 0.1867 |
| 3.5038 | 466 | - | 0.1865 |
| 3.5188 | 468 | - | 0.1862 |
| 3.5338 | 470 | - | 0.1863 |
| 3.5489 | 472 | - | 0.1860 |
| 3.5639 | 474 | - | 0.1859 |
| 3.5789 | 476 | - | 0.1858 |
| 3.5940 | 478 | - | 0.1858 |
| 3.6090 | 480 | - | 0.1854 |
| 3.6241 | 482 | - | 0.1854 |
| 3.6391 | 484 | - | 0.1859 |
| 3.6541 | 486 | - | 0.1861 |
| 3.6692 | 488 | - | 0.1863 |
| 3.6842 | 490 | - | 0.1867 |
| 3.6992 | 492 | - | 0.1874 |
| 3.7143 | 494 | - | 0.1881 |
| 3.7293 | 496 | - | 0.1884 |
| 3.7444 | 498 | - | 0.1884 |
| 3.7594 | 500 | 0.3408 | 0.1884 |
| 3.7744 | 502 | - | 0.1886 |
| 3.7895 | 504 | - | 0.1889 |
| 3.8045 | 506 | - | 0.1885 |
| 3.8195 | 508 | - | 0.1886 |
| 3.8346 | 510 | - | 0.1886 |
| 3.8496 | 512 | - | 0.1885 |
| 3.8647 | 514 | - | 0.1883 |
| 3.8797 | 516 | - | 0.1886 |
| 3.8947 | 518 | - | 0.1884 |
| 3.9098 | 520 | - | 0.1883 |
| 3.9248 | 522 | - | 0.1887 |
| 3.9398 | 524 | - | 0.1887 |
| 3.9549 | 526 | - | 0.1890 |
| 3.9699 | 528 | - | 0.1891 |
| 3.9850 | 530 | - | 0.1892 |
| 4.0 | 532 | - | 0.1890 |
| 4.0150 | 534 | - | 0.1888 |
| 4.0301 | 536 | - | 0.1889 |
| 4.0451 | 538 | - | 0.1887 |
| 4.0602 | 540 | - | 0.1887 |
| 4.0752 | 542 | - | 0.1885 |
| 4.0902 | 544 | - | 0.1884 |
| 4.1053 | 546 | - | 0.1888 |
| 4.1203 | 548 | - | 0.1894 |
| 4.1353 | 550 | - | 0.1897 |
| 4.1504 | 552 | - | 0.1901 |
| 4.1654 | 554 | - | 0.1904 |
| 4.1805 | 556 | - | 0.1905 |
| 4.1955 | 558 | - | 0.1903 |
| 4.2105 | 560 | - | 0.1904 |
| 4.2256 | 562 | - | 0.1908 |
| 4.2406 | 564 | - | 0.1907 |
| 4.2556 | 566 | - | 0.1906 |
| 4.2707 | 568 | - | 0.1908 |
| 4.2857 | 570 | - | 0.1909 |
| 4.3008 | 572 | - | 0.1908 |
| 4.3158 | 574 | - | 0.1902 |
| 4.3308 | 576 | - | 0.1902 |
| 4.3459 | 578 | - | 0.1906 |
| 4.3609 | 580 | - | 0.1904 |
| 4.3759 | 582 | - | 0.1907 |
| 4.3910 | 584 | - | 0.1909 |
| 4.4060 | 586 | - | 0.1909 |
| 4.4211 | 588 | - | 0.1909 |
| 4.4361 | 590 | - | 0.1909 |
| 4.4511 | 592 | - | 0.1908 |
| 4.4662 | 594 | - | 0.1907 |
| 4.4812 | 596 | - | 0.1905 |
| 4.4962 | 598 | - | 0.1906 |
| 4.5113 | 600 | - | 0.1903 |
| 4.5263 | 602 | - | 0.1902 |
| 4.5414 | 604 | - | 0.1900 |
| 4.5564 | 606 | - | 0.1900 |
| 4.5714 | 608 | - | 0.1900 |
| 4.5865 | 610 | - | 0.1902 |
| 4.6015 | 612 | - | 0.1903 |
| 4.6165 | 614 | - | 0.1903 |
| 4.6316 | 616 | - | 0.1902 |
| 4.6466 | 618 | - | 0.1901 |
| 4.6617 | 620 | - | 0.1899 |
| 4.6767 | 622 | - | 0.1899 |
| 4.6917 | 624 | - | 0.1898 |
| 4.7068 | 626 | - | 0.1896 |
| 4.7218 | 628 | - | 0.1898 |
| 4.7368 | 630 | - | 0.1897 |
| 4.7519 | 632 | - | 0.1897 |
| 4.7669 | 634 | - | 0.1897 |
| 4.7820 | 636 | - | 0.1891 |
| 4.7970 | 638 | - | 0.1895 |
| 4.8120 | 640 | - | 0.1897 |
| 4.8271 | 642 | - | 0.1899 |
| 4.8421 | 644 | - | 0.1898 |
| 4.8571 | 646 | - | 0.1898 |
| 4.8722 | 648 | - | 0.1898 |
| 4.8872 | 650 | - | 0.1897 |
| 4.9023 | 652 | - | 0.1897 |
| 4.9173 | 654 | - | 0.1895 |
| 4.9323 | 656 | - | 0.1893 |
| 4.9474 | 658 | - | 0.1893 |
| 4.9624 | 660 | - | 0.1894 |
| 4.9774 | 662 | - | 0.1895 |
| 4.9925 | 664 | - | 0.1900 |
| 5.0 | 665 | - | 0.1900 |
| 5.0075 | 666 | - | 0.1900 |
| 5.0226 | 668 | - | 0.1901 |
| 5.0376 | 670 | - | 0.1902 |
| 5.0526 | 672 | - | 0.1901 |
| 5.0677 | 674 | - | 0.1901 |
| 5.0827 | 676 | - | 0.1903 |
| 5.0977 | 678 | - | 0.1904 |
| 5.1128 | 680 | - | 0.1903 |
| 5.1278 | 682 | - | 0.1905 |
| 5.1429 | 684 | - | 0.1905 |
| 5.1579 | 686 | - | 0.1906 |
| 5.1729 | 688 | - | 0.1906 |
| 5.1880 | 690 | - | 0.1908 |
| 5.2030 | 692 | - | 0.1908 |
| 5.2180 | 694 | - | 0.1909 |
| 5.2331 | 696 | - | 0.1911 |
| 5.2481 | 698 | - | 0.1911 |
| 5.2632 | 700 | - | 0.1911 |
| 5.2782 | 702 | - | 0.1913 |
| 5.2932 | 704 | - | 0.1910 |
| 5.3083 | 706 | - | 0.1912 |
| 5.3233 | 708 | - | 0.1911 |
| 5.3383 | 710 | - | 0.1910 |
| 5.3534 | 712 | - | 0.1912 |
| 5.3684 | 714 | - | 0.1912 |
| 5.3835 | 716 | - | 0.1910 |
| 5.3985 | 718 | - | 0.1909 |
| 5.4135 | 720 | - | 0.1910 |
| 5.4286 | 722 | - | 0.1910 |
| 5.4436 | 724 | - | 0.1910 |
| 5.4586 | 726 | - | 0.1912 |
| 5.4737 | 728 | - | 0.1912 |
| 5.4887 | 730 | - | 0.1914 |
| 5.5038 | 732 | - | 0.1914 |
| 5.5188 | 734 | - | 0.1914 |
| 5.5338 | 736 | - | 0.1912 |
| 5.5489 | 738 | - | 0.1912 |
| 5.5639 | 740 | - | 0.1914 |
| 5.5789 | 742 | - | 0.1914 |
| 5.5940 | 744 | - | 0.1915 |
Framework Versions
- Python: 3.12.2
- Sentence Transformers: 3.4.1
- Transformers: 4.50.0
- PyTorch: 2.6.0
- Accelerate: 1.5.2
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- -
Model tree for magnifi/bge-small-en-v1-5-ft-test-run
Base model
BAAI/bge-small-en-v1.5Evaluation results
- Cosine Accuracy@1 on Unknownself-reported0.728
- Cosine Accuracy@3 on Unknownself-reported0.933
- Cosine Accuracy@5 on Unknownself-reported0.964
- Cosine Accuracy@10 on Unknownself-reported0.991
- Cosine Precision@1 on Unknownself-reported0.728
- Cosine Precision@3 on Unknownself-reported0.311
- Cosine Precision@5 on Unknownself-reported0.193
- Cosine Precision@10 on Unknownself-reported0.099
- Cosine Recall@1 on Unknownself-reported0.020
- Cosine Recall@3 on Unknownself-reported0.026