SentenceTransformer based on sentence-transformers/quora-distilbert-multilingual
This is a sentence-transformers model finetuned from sentence-transformers/quora-distilbert-multilingual. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/quora-distilbert-multilingual
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("melino2000/product-torob-matching")
# Run inference
sentences = [
'رایزر گرافیک مدل 009s plus هشت خازنه',
'رایزر گرافیک تبدیل PCI EXPRESS X1 به X16 مدل 009S',
'شامپو کودک حاوی عصاره اسطوخودوس فیروز200 میل',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Dataset:
product-matching-binary - Evaluated with
BinaryClassificationEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy | 0.9908 |
| cosine_accuracy_threshold | 0.7373 |
| cosine_f1 | 0.9908 |
| cosine_f1_threshold | 0.7295 |
| cosine_precision | 0.99 |
| cosine_recall | 0.9915 |
| cosine_ap | 0.9989 |
| cosine_mcc | 0.9815 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 32,000 training samples
- Columns:
sentence1,sentence2, andlabel - Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string int details - min: 6 tokens
- mean: 19.0 tokens
- max: 68 tokens
- min: 5 tokens
- mean: 19.06 tokens
- max: 56 tokens
- 0: ~49.40%
- 1: ~50.60%
- Samples:
sentence1 sentence2 label پرینتر چندکاره لیزری HP LaserJet Pro M130aپرینتر لیزری سه کاره اچ پی HP M130a1قرص روکشدار مولتی دیلی دکتر گیل 60 عددی داروسازی رازان فارمدیانقرص مولتی دیلی دکتر گیل1خمیردندان کلگیت 3 کاره Triple Action100 میل خمیر دندان کولگیت مدل 3 کاره حجم 100 میل - Loss:
OnlineContrastiveLoss
Evaluation Dataset
Unnamed Dataset
- Size: 8,000 evaluation samples
- Columns:
sentence1,sentence2, andlabel - Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string int details - min: 5 tokens
- mean: 19.24 tokens
- max: 69 tokens
- min: 2 tokens
- mean: 18.76 tokens
- max: 56 tokens
- 0: ~50.00%
- 1: ~50.00%
- Samples:
sentence1 sentence2 label مایکرو فر 36 لیتری ناسا الکتریک مدل NS-2024سرویس کاور روتختی تک نفره ایکیا مدل Ikea BRUNKRISSLA 404.907.230کنسول بازی نینتندو سوییچ سفید - Nintendo Switch OLED Model whiteNINTENDO SWITCH OLED (Neon Red & Neon Blue)1خمیر دندان کرست مدل Complete 7قلمو سرگرد 2122 پارس آرت (32400_107700 تومان)0 - Loss:
OnlineContrastiveLoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 32per_device_eval_batch_size: 32warmup_ratio: 0.1fp16: Truebatch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 32per_device_eval_batch_size: 32per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 3max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | Validation Loss | product-matching-binary_cosine_ap |
|---|---|---|---|---|
| -1 | -1 | - | - | 0.9436 |
| 0.1 | 100 | 0.637 | - | - |
| 0.2 | 200 | 0.1303 | - | - |
| 0.25 | 250 | - | 0.0785 | 0.9961 |
| 0.3 | 300 | 0.1378 | - | - |
| 0.4 | 400 | 0.1191 | - | - |
| 0.5 | 500 | 0.0949 | 0.0723 | 0.9963 |
| 0.6 | 600 | 0.1016 | - | - |
| 0.7 | 700 | 0.0694 | - | - |
| 0.75 | 750 | - | 0.0464 | 0.9974 |
| 0.8 | 800 | 0.0619 | - | - |
| 0.9 | 900 | 0.0543 | - | - |
| 1.0 | 1000 | 0.0658 | 0.0394 | 0.9981 |
| 1.1 | 1100 | 0.0326 | - | - |
| 1.2 | 1200 | 0.0176 | - | - |
| 1.25 | 1250 | - | 0.0387 | 0.9980 |
| 1.3 | 1300 | 0.0237 | - | - |
| 1.4 | 1400 | 0.0219 | - | - |
| 1.5 | 1500 | 0.0115 | 0.0259 | 0.9983 |
| 1.6 | 1600 | 0.0218 | - | - |
| 1.7 | 1700 | 0.0235 | - | - |
| 1.75 | 1750 | - | 0.0230 | 0.9988 |
| 1.8 | 1800 | 0.0319 | - | - |
| 1.9 | 1900 | 0.0127 | - | - |
| 2.0 | 2000 | 0.015 | 0.0285 | 0.9987 |
| 2.099 | 2100 | 0.0121 | - | - |
| 2.199 | 2200 | 0.0091 | - | - |
| 2.249 | 2250 | - | 0.0217 | 0.9986 |
| 2.299 | 2300 | 0.0107 | - | - |
| 2.399 | 2400 | 0.009 | - | - |
| 2.499 | 2500 | 0.0043 | 0.0224 | 0.9989 |
| 2.599 | 2600 | 0.0028 | - | - |
| 2.699 | 2700 | 0.0026 | - | - |
| 2.749 | 2750 | - | 0.0248 | 0.9989 |
| 2.799 | 2800 | 0.0024 | - | - |
| 2.899 | 2900 | 0.0067 | - | - |
| 2.999 | 3000 | 0.0088 | 0.0225 | 0.9989 |
| -1 | -1 | - | - | 0.9989 |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.48.3
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 69
Model tree for melino2000/product-torob-matching
Evaluation results
- Cosine Accuracy on product matching binaryself-reported0.991
- Cosine Accuracy Threshold on product matching binaryself-reported0.737
- Cosine F1 on product matching binaryself-reported0.991
- Cosine F1 Threshold on product matching binaryself-reported0.730
- Cosine Precision on product matching binaryself-reported0.990
- Cosine Recall on product matching binaryself-reported0.992
- Cosine Ap on product matching binaryself-reported0.999
- Cosine Mcc on product matching binaryself-reported0.982