SentenceTransformer based on Unbabel/xlm-roberta-comet-small
This is a sentence-transformers model finetuned from Unbabel/xlm-roberta-comet-small on the sentence-transformers/all-nli dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Unbabel/xlm-roberta-comet-small
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("mics-nlp/xlm-roberta-small-all-nli-triplet")
# Run inference
sentences = [
'a baby smiling',
'A baby is unhappy.',
'The dog has big ears.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Dataset:
all-nli-dev - Evaluated with
TripletEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy | 0.849 |
| dot_accuracy | 0.163 |
| manhattan_accuracy | 0.837 |
| euclidean_accuracy | 0.841 |
| max_accuracy | 0.849 |
Triplet
- Dataset:
all-nli-test - Evaluated with
TripletEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy | 0.839 |
| dot_accuracy | 0.15 |
| manhattan_accuracy | 0.827 |
| euclidean_accuracy | 0.827 |
| max_accuracy | 0.839 |
Training Details
Training Dataset
sentence-transformers/all-nli
- Dataset: sentence-transformers/all-nli at d482672
- Size: 100,000 training samples
- Columns:
anchor,positive, andnegative - Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 7 tokens
- mean: 10.9 tokens
- max: 52 tokens
- min: 6 tokens
- mean: 13.62 tokens
- max: 42 tokens
- min: 5 tokens
- mean: 14.76 tokens
- max: 55 tokens
- Samples:
anchor positive negative A person on a horse jumps over a broken down airplane.A person is outdoors, on a horse.A person is at a diner, ordering an omelette.Children smiling and waving at cameraThere are children presentThe kids are frowningA boy is jumping on skateboard in the middle of a red bridge.The boy does a skateboarding trick.The boy skates down the sidewalk. - Loss:
CachedMultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
sentence-transformers/all-nli
- Dataset: sentence-transformers/all-nli at d482672
- Size: 1,000 evaluation samples
- Columns:
anchor,positive, andnegative - Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 6 tokens
- mean: 20.31 tokens
- max: 83 tokens
- min: 5 tokens
- mean: 10.71 tokens
- max: 35 tokens
- min: 5 tokens
- mean: 11.39 tokens
- max: 32 tokens
- Samples:
anchor positive negative Two women are embracing while holding to go packages.Two woman are holding packages.The men are fighting outside a deli.Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.Two kids in numbered jerseys wash their hands.Two kids in jackets walk to school.A man selling donuts to a customer during a world exhibition event held in the city of AngelesA man selling donuts to a customer.A woman drinks her coffee in a small cafe. - Loss:
CachedMultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 16per_device_eval_batch_size: 16num_train_epochs: 1warmup_ratio: 0.1bf16: Truebatch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Truefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falsebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | loss | all-nli-dev_max_accuracy | all-nli-test_max_accuracy |
|---|---|---|---|---|---|
| 0 | 0 | - | - | 0.541 | - |
| 0.016 | 100 | 3.5308 | 3.1817 | 0.558 | - |
| 0.032 | 200 | 3.2784 | 3.0406 | 0.597 | - |
| 0.048 | 300 | 3.113 | 2.7572 | 0.635 | - |
| 0.064 | 400 | 2.8296 | 2.4646 | 0.68 | - |
| 0.08 | 500 | 2.631 | 2.3583 | 0.676 | - |
| 0.096 | 600 | 2.3247 | 2.1394 | 0.706 | - |
| 0.112 | 700 | 2.2211 | 2.0201 | 0.711 | - |
| 0.128 | 800 | 2.1263 | 1.9560 | 0.757 | - |
| 0.144 | 900 | 2.2105 | 1.9074 | 0.748 | - |
| 0.16 | 1000 | 2.0637 | 1.9289 | 0.728 | - |
| 0.176 | 1100 | 2.1772 | 1.8796 | 0.741 | - |
| 0.192 | 1200 | 2.1518 | 1.8346 | 0.761 | - |
| 0.208 | 1300 | 1.728 | 1.8213 | 0.765 | - |
| 0.224 | 1400 | 1.8101 | 1.6321 | 0.772 | - |
| 0.24 | 1500 | 1.7516 | 1.5669 | 0.793 | - |
| 0.256 | 1600 | 1.4988 | 1.5538 | 0.8 | - |
| 0.272 | 1700 | 1.6695 | 1.5462 | 0.803 | - |
| 0.288 | 1800 | 1.5971 | 1.5499 | 0.783 | - |
| 0.304 | 1900 | 1.5614 | 1.5047 | 0.788 | - |
| 0.32 | 2000 | 1.522 | 1.4957 | 0.794 | - |
| 0.336 | 2100 | 1.3624 | 1.4153 | 0.814 | - |
| 0.352 | 2200 | 1.4773 | 1.4169 | 0.809 | - |
| 0.368 | 2300 | 1.6066 | 1.3697 | 0.813 | - |
| 0.384 | 2400 | 1.5106 | 1.3203 | 0.819 | - |
| 0.4 | 2500 | 1.4783 | 1.3417 | 0.817 | - |
| 0.416 | 2600 | 1.3696 | 1.2650 | 0.824 | - |
| 0.432 | 2700 | 1.5115 | 1.2779 | 0.829 | - |
| 0.448 | 2800 | 1.4834 | 1.2668 | 0.834 | - |
| 0.464 | 2900 | 1.4823 | 1.2621 | 0.836 | - |
| 0.48 | 3000 | 1.4163 | 1.2465 | 0.837 | - |
| 0.496 | 3100 | 1.4232 | 1.2475 | 0.837 | - |
| 0.512 | 3200 | 1.2193 | 1.1975 | 0.838 | - |
| 0.528 | 3300 | 1.2569 | 1.1816 | 0.838 | - |
| 0.544 | 3400 | 1.2988 | 1.1936 | 0.839 | - |
| 0.56 | 3500 | 1.5068 | 1.2213 | 0.835 | - |
| 0.576 | 3600 | 1.3022 | 1.1799 | 0.842 | - |
| 0.592 | 3700 | 1.3823 | 1.1910 | 0.831 | - |
| 0.608 | 3800 | 1.4224 | 1.1786 | 0.834 | - |
| 0.624 | 3900 | 1.3765 | 1.1541 | 0.843 | - |
| 0.64 | 4000 | 1.4987 | 1.1365 | 0.844 | - |
| 0.656 | 4100 | 1.7525 | 1.1394 | 0.843 | - |
| 0.672 | 4200 | 1.6013 | 1.1178 | 0.841 | - |
| 0.688 | 4300 | 1.3326 | 1.0959 | 0.846 | - |
| 0.704 | 4400 | 1.355 | 1.0757 | 0.848 | - |
| 0.72 | 4500 | 1.2834 | 1.0681 | 0.846 | - |
| 0.736 | 4600 | 1.2939 | 1.0696 | 0.85 | - |
| 0.752 | 4700 | 1.4069 | 1.0645 | 0.848 | - |
| 0.768 | 4800 | 1.4503 | 1.0609 | 0.849 | - |
| 0.784 | 4900 | 1.2833 | 1.0587 | 0.847 | - |
| 0.8 | 5000 | 1.3321 | 1.0563 | 0.849 | - |
| 0.816 | 5100 | 1.3006 | 1.0539 | 0.847 | - |
| 0.832 | 5200 | 1.4332 | 1.0527 | 0.847 | - |
| 0.848 | 5300 | 1.3101 | 1.0505 | 0.848 | - |
| 0.864 | 5400 | 1.3658 | 1.0523 | 0.849 | - |
| 0.88 | 5500 | 1.353 | 1.0520 | 0.849 | - |
| 0.896 | 5600 | 1.2429 | 1.0521 | 0.848 | - |
| 0.912 | 5700 | 1.3512 | 1.0505 | 0.848 | - |
| 0.928 | 5800 | 1.2995 | 1.0501 | 0.848 | - |
| 0.944 | 5900 | 1.3514 | 1.0491 | 0.849 | - |
| 0.96 | 6000 | 1.3976 | 1.0490 | 0.848 | - |
| 0.976 | 6100 | 1.2112 | 1.0487 | 0.848 | - |
| 0.992 | 6200 | 0.0033 | 1.0492 | 0.849 | - |
| 1.0 | 6250 | - | - | - | 0.839 |
Framework Versions
- Python: 3.9.10
- Sentence Transformers: 3.0.0
- Transformers: 4.41.2
- PyTorch: 2.3.0+cu121
- Accelerate: 0.26.1
- Datasets: 2.16.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CachedMultipleNegativesRankingLoss
@misc{gao2021scaling,
title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},
author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
year={2021},
eprint={2101.06983},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
- Downloads last month
- 5
Model tree for mics-nlp/xlm-roberta-small-all-nli-triplet
Base model
Unbabel/xlm-roberta-comet-smallEvaluation results
- Cosine Accuracy on all nli devself-reported0.849
- Dot Accuracy on all nli devself-reported0.163
- Manhattan Accuracy on all nli devself-reported0.837
- Euclidean Accuracy on all nli devself-reported0.841
- Max Accuracy on all nli devself-reported0.849
- Cosine Accuracy on all nli testself-reported0.839
- Dot Accuracy on all nli testself-reported0.150
- Manhattan Accuracy on all nli testself-reported0.827
- Euclidean Accuracy on all nli testself-reported0.827
- Max Accuracy on all nli testself-reported0.839