metadata
base_model: nreimers/MiniLMv2-L6-H384-distilled-from-RoBERTa-Large
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: MiniLMv2-L6-H384-distilled-from-RoBERTa-Large-userflow-distil
results: []
MiniLMv2-L6-H384-distilled-from-RoBERTa-Large-userflow-distil
This model is a fine-tuned version of nreimers/MiniLMv2-L6-H384-distilled-from-RoBERTa-Large on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6738
- Accuracy: 0.7236
- F1: 0.7313
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7e-05
- train_batch_size: 10
- eval_batch_size: 10
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 8
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
No log | 0.25 | 100 | 2.3745 | 0.3923 | 0.2210 |
No log | 0.51 | 200 | 2.1198 | 0.4126 | 0.2567 |
No log | 0.76 | 300 | 1.8704 | 0.4756 | 0.3979 |
No log | 1.01 | 400 | 1.5780 | 0.5305 | 0.4551 |
2.1769 | 1.26 | 500 | 1.3717 | 0.5650 | 0.5037 |
2.1769 | 1.52 | 600 | 1.2590 | 0.5935 | 0.5543 |
2.1769 | 1.77 | 700 | 1.0973 | 0.6280 | 0.5804 |
2.1769 | 2.02 | 800 | 0.9814 | 0.6423 | 0.5978 |
2.1769 | 2.27 | 900 | 0.9589 | 0.6463 | 0.6152 |
0.9806 | 2.53 | 1000 | 0.9098 | 0.6565 | 0.6483 |
0.9806 | 2.78 | 1100 | 0.8747 | 0.6321 | 0.6194 |
0.9806 | 3.03 | 1200 | 0.8172 | 0.6931 | 0.6902 |
0.9806 | 3.28 | 1300 | 0.7862 | 0.7033 | 0.7017 |
0.9806 | 3.54 | 1400 | 0.7975 | 0.6890 | 0.6952 |
0.4166 | 3.79 | 1500 | 0.7674 | 0.6951 | 0.6913 |
0.4166 | 4.04 | 1600 | 0.7521 | 0.6911 | 0.6997 |
0.4166 | 4.29 | 1700 | 0.7944 | 0.6951 | 0.7055 |
0.4166 | 4.55 | 1800 | 0.7366 | 0.7093 | 0.7127 |
0.4166 | 4.8 | 1900 | 0.7412 | 0.6911 | 0.6944 |
0.2158 | 5.05 | 2000 | 0.7246 | 0.7012 | 0.7083 |
0.2158 | 5.3 | 2100 | 0.7097 | 0.7195 | 0.7253 |
0.2158 | 5.56 | 2200 | 0.6914 | 0.7134 | 0.7197 |
0.2158 | 5.81 | 2300 | 0.6875 | 0.7175 | 0.7266 |
0.2158 | 6.06 | 2400 | 0.6544 | 0.7236 | 0.7296 |
0.1423 | 6.31 | 2500 | 0.6738 | 0.7236 | 0.7313 |
0.1423 | 6.57 | 2600 | 0.6640 | 0.7175 | 0.7253 |
0.1423 | 6.82 | 2700 | 0.6617 | 0.7154 | 0.7233 |
0.1423 | 7.07 | 2800 | 0.6582 | 0.7154 | 0.7205 |
0.1423 | 7.32 | 2900 | 0.6678 | 0.7033 | 0.7093 |
0.1204 | 7.58 | 3000 | 0.6596 | 0.7154 | 0.7197 |
0.1204 | 7.83 | 3100 | 0.6598 | 0.7154 | 0.7217 |
Framework versions
- Transformers 4.37.0
- Pytorch 2.1.2
- Datasets 2.1.0
- Tokenizers 0.15.1