MiDashengLM-7B-0804 (4bit, bitsandbytes)

The bnb-4bit weights for mispeech/midashenglm-7b-0804-fp32.

Note: This is a basic 4-bit quantization using bitsandbytes. For better performance and accuracy, we recommend using our GPTQ-quantized version which maintains higher quality while still providing significant memory savings.

Usage

Load Model

from transformers import AutoModelForCausalLM, AutoProcessor, AutoTokenizer

model_id = "mispeech/midashenglm-7b-0804-4bit-bnb"  # "mispeech/midashenglm-7b-0804-w4a16-gptq" is more recommended
model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)

Construct Prompt

user_prompt = "Caption the audio."  # You may try any other prompt

messages = [
    {
        "role": "system",
        "content": [
            {"type": "text", "text": "You are a helpful language and speech assistant."}
        ],
    },
    {
        "role": "user",
        "content": [
            {"type": "text", "text": user_prompt},
            {
                "type": "audio",
                "path": "/path/to/example.wav",
                # or "url": "https://example.com/example.wav"
                # or "audio": np.random.randn(16000)
            },
        ],
    },
]

Generate Output

import torch

with torch.no_grad():
    model_inputs = processor.apply_chat_template(
        messages,
        tokenize=True,
        add_generation_prompt=True,
        add_special_tokens=True,
        return_dict=True,
    ).to(device=model.device, dtype=model.dtype)
    generation = model.generate(**model_inputs)
    output = tokenizer.batch_decode(generation, skip_special_tokens=True)  # ["An engine is idling."]

Citation

MiDashengLM is under the Apache License 2.0, and we encourage its use in both research and business applications.

If you find MiDashengLM useful in your research, please consider citing our work:

@techreport{midashenglm7b,
  title      = {MiDashengLM: Efficient Audio Understanding with General Audio Captions},
  author     = {{Horizon Team, MiLM Plus}},
  institution= {Xiaomi Inc.},
  year       = {2025},
  note       = {Contributors: Heinrich Dinkel et al. (listed alphabetically in Appendix B)},
  url        = {https://arxiv.org/abs/2508.03983},
  eprint     = {2508.03983},
}
Downloads last month
13
Safetensors
Model size
8B params
Tensor type
F32
BF16
U8
Inference Providers NEW
This model isn't deployed by any Inference Provider. 馃檵 Ask for provider support

Model tree for mispeech/midashenglm-7b-0804-4bit-bnb

Finetuned
(37)
this model