Griot Regression Model Card

  • Model name: mjpsm/Griot_xgb_model
  • Model type: Regression model (XGBoost)
  • Archetype: GriotReflective, sacred archivist of memory
  • Author: Mazamesso “JP” Meba (Coding in Color / MyVillage Project)
  • License: MIT
  • Version: v1.0

This model predicts a Griot score (0–1) for a given input text, reflecting how closely the text embodies the Griot archetype traits: wise, introspective, articulate, attentive, empathic, grounded.

  • Primary use: Ancestral-AI aligned applications where reflective storytelling or wisdom-sharing needs to be measured.
  • Applications:
    • Analyzing transcripts to detect reflective/archival tones
    • Powering Soulprint-aligned chatbots or recommendation systems
    • Scoring personal reflections or intergenerational narratives

Not intended for: general sentiment analysis, factual correctness evaluation, or unrelated text classification.

  • Training dataset: griot_balanced_training_data_strict_unique.jsonl

  • Size: ~1,200 examples (balanced, strict uniqueness applied)

  • Format: JSONL with fields:
    {"input": "During a family gathering, I reminded everyone of our shared history.", "output": 0.82}

  • Sources: Culturally-informed prompts and Afrocentric wisdom narratives created under the Soulprint system.

  • Base embeddings: sentence-transformers/all-mpnet-base-v2

  • Regressor: XGBoost (regression objective)

  • Saved file: griot_xgb_regression_model_updated_parameters.pkl

Example Usage

import joblib
from sentence_transformers import SentenceTransformer
from huggingface_hub import hf_hub_download

# -----------------------------
# 1. Download model from Hugging Face Hub
# -----------------------------
REPO_ID = "mjpsm/Griot_xgb_model"
FILENAME = "griot_xgb_regression_model_updated_parameters.pkl"

model_path = hf_hub_download(repo_id=REPO_ID, filename=FILENAME)
model = joblib.load(model_path)

# -----------------------------
# 2. Load embedder
# -----------------------------
embedder = SentenceTransformer("all-mpnet-base-v2")

# -----------------------------
# 3. Example prediction
# -----------------------------
text = "During a heated family argument, I stayed calm and reminded everyone of our values."
embedding = embedder.encode([text])
score = model.predict([embedding])[0]

print("Predicted Griot Score:", round(float(score), 3))
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Space using mjpsm/Griot-xgb-model 1

Evaluation results

  • MSE on griot_balanced_training_data_strict_unique
    self-reported
    0.009
  • on griot_balanced_training_data_strict_unique
    self-reported
    0.899