Griot Regression Model Card
- Model name:
mjpsm/Griot_xgb_model - Model type: Regression model (XGBoost)
- Archetype: Griot — Reflective, sacred archivist of memory
- Author: Mazamesso “JP” Meba (Coding in Color / MyVillage Project)
- License: MIT
- Version: v1.0
This model predicts a Griot score (0–1) for a given input text, reflecting how closely the text embodies the Griot archetype traits: wise, introspective, articulate, attentive, empathic, grounded.
- Primary use: Ancestral-AI aligned applications where reflective storytelling or wisdom-sharing needs to be measured.
- Applications:
- Analyzing transcripts to detect reflective/archival tones
- Powering Soulprint-aligned chatbots or recommendation systems
- Scoring personal reflections or intergenerational narratives
Not intended for: general sentiment analysis, factual correctness evaluation, or unrelated text classification.
Training dataset:
griot_balanced_training_data_strict_unique.jsonlSize: ~1,200 examples (balanced, strict uniqueness applied)
Format: JSONL with fields:
{"input": "During a family gathering, I reminded everyone of our shared history.", "output": 0.82}Sources: Culturally-informed prompts and Afrocentric wisdom narratives created under the Soulprint system.
Base embeddings:
sentence-transformers/all-mpnet-base-v2Regressor: XGBoost (regression objective)
Saved file:
griot_xgb_regression_model_updated_parameters.pkl
Example Usage
import joblib
from sentence_transformers import SentenceTransformer
from huggingface_hub import hf_hub_download
# -----------------------------
# 1. Download model from Hugging Face Hub
# -----------------------------
REPO_ID = "mjpsm/Griot_xgb_model"
FILENAME = "griot_xgb_regression_model_updated_parameters.pkl"
model_path = hf_hub_download(repo_id=REPO_ID, filename=FILENAME)
model = joblib.load(model_path)
# -----------------------------
# 2. Load embedder
# -----------------------------
embedder = SentenceTransformer("all-mpnet-base-v2")
# -----------------------------
# 3. Example prediction
# -----------------------------
text = "During a heated family argument, I stayed calm and reminded everyone of our values."
embedding = embedder.encode([text])
score = model.predict([embedding])[0]
print("Predicted Griot Score:", round(float(score), 3))
Space using mjpsm/Griot-xgb-model 1
Evaluation results
- MSE on griot_balanced_training_data_strict_uniqueself-reported0.009
- R² on griot_balanced_training_data_strict_uniqueself-reported0.899