mdeberta-v3-base-finetuned-renewable-energy-classification
This model is a fine-tuned version of microsoft/mdeberta-v3-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0968
- Accuracy: 0.9823
- F1 Macro: 0.8778
- Accuracy Balanced: 0.8515
- F1 Micro: 0.9823
- Precision Macro: 0.9088
- Recall Macro: 0.8515
- Precision Micro: 0.9823
- Recall Micro: 0.9823
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | Accuracy Balanced | F1 Micro | Precision Macro | Recall Macro | Precision Micro | Recall Micro |
---|---|---|---|---|---|---|---|---|---|---|---|
0.2312 | 0.7353 | 500 | 0.1702 | 0.9595 | 0.4897 | 0.5 | 0.9595 | 0.4798 | 0.5 | 0.9595 | 0.9595 |
0.1558 | 1.4706 | 1000 | 0.0969 | 0.9757 | 0.7949 | 0.7261 | 0.9757 | 0.9352 | 0.7261 | 0.9757 | 0.9757 |
0.1042 | 2.2059 | 1500 | 0.1112 | 0.9706 | 0.8199 | 0.8366 | 0.9706 | 0.8049 | 0.8366 | 0.9706 | 0.9706 |
0.0622 | 2.9412 | 2000 | 0.1319 | 0.9757 | 0.7996 | 0.7348 | 0.9757 | 0.9224 | 0.7348 | 0.9757 | 0.9757 |
0.0499 | 3.6765 | 2500 | 0.0968 | 0.9823 | 0.8778 | 0.8515 | 0.9823 | 0.9088 | 0.8515 | 0.9823 | 0.9823 |
Framework versions
- Transformers 4.52.2
- Pytorch 2.6.0+cu124
- Datasets 2.14.4
- Tokenizers 0.21.1
- Downloads last month
- 5
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for mljn/mdeberta-v3-base-finetuned-renewable-energy-classification
Base model
microsoft/mdeberta-v3-base