metadata
			tags:
  - ultralyticsplus
  - yolov8
  - ultralytics
  - yolo
  - vision
  - object-detection
  - pytorch
  - visdrone
  - uav
library_name: ultralytics
library_version: 8.0.43
inference: false
model-index:
  - name: mshamrai/yolov8n-visdrone
    results:
      - task:
          type: object-detection
        metrics:
          - type: precision
            value: 0.34094
            name: [email protected](box)
license: openrail
 
Supported Labels
['pedestrian', 'people', 'bicycle', 'car', 'van', 'truck', 'tricycle', 'awning-tricycle', 'bus', 'motor']
How to use
- Install ultralyticsplus:
pip install ultralyticsplus==0.0.28 ultralytics==8.0.43
- Load model and perform prediction:
from ultralyticsplus import YOLO, render_result
# load model
model = YOLO('mshamrai/yolov8n-visdrone')
# set model parameters
model.overrides['conf'] = 0.25  # NMS confidence threshold
model.overrides['iou'] = 0.45  # NMS IoU threshold
model.overrides['agnostic_nms'] = False  # NMS class-agnostic
model.overrides['max_det'] = 1000  # maximum number of detections per image
# set image
image = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'
# perform inference
results = model.predict(image)
# observe results
print(results[0].boxes)
render = render_result(model=model, image=image, result=results[0])
render.show()
