See axolotl config
axolotl version: 0.6.0
base_model: PrimeIntellect/INTELLECT-1-Instruct
trust_remote_code: true
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
gpu_memory_limit: 
deepspeed: deepspeed_configs/zero2.json
load_in_8bit: 
load_in_4bit:
strict: false
chat_template: llama3
datasets:
  - path: neginashz/rationale-llama-chat-dataset
    type: chat_template
    chat_template: llama3
    field_messages: messages
    message_field_role: role
    message_field_content: content
    roles:
      system:
        - system
      user:
        - user
      assistant:
        - assistant
    #roles_to_train: ["assistant"]  # default
    # Optional[str]. Which EOS tokens to train on in the conversation. Possible values are:
    # - all: train on all EOS tokens
    # - turn (default): train on the EOS token at the end of each trainable turn
    # - last: train on the last EOS token in the conversation
    #train_on_eos: turn
    
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./star-sft-intellect-5
sequence_len: 4096
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
wandb_project: star-sft-intellect-instruct-5
wandb_entity: 
wandb_watch:
wandb_name: 
wandb_log_model: 
gradient_checkpointing: true
#gradient_clipping: true
gradient_accumulation_steps: 1
#batch_size: 1
micro_batch_size: 1
num_epochs: 1
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.00002
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps:
eval_steps: 
save_steps:
evals_per_epoch: 16
saves_per_epoch: 4
eval_max_new_tokens: 128
debug:
weight_decay:
fsdp:
fsdp_config:
hub_model_id: neginashz/star-sft-intellect-instruct-5
hub_strategy: 
early_stopping_patience:
resume_from_checkpoint:
auto_resume_from_checkpoints: true
#special_tokens:
#   pad_token: <|end_of_text|>
star-sft-intellect-instruct-5
This model is a fine-tuned version of PrimeIntellect/INTELLECT-1-Instruct on the neginashz/rationale-llama-chat-dataset dataset. It achieves the following results on the evaluation set:
- Loss: 0.3364
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 4
- total_eval_batch_size: 4
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 6
- num_epochs: 1
Training results
| Training Loss | Epoch | Step | Validation Loss | 
|---|---|---|---|
| 0.4105 | 0.0664 | 15 | 0.4274 | 
| 0.4759 | 0.1327 | 30 | 0.4348 | 
| 0.4704 | 0.1991 | 45 | 0.4255 | 
| 0.4612 | 0.2655 | 60 | 0.4167 | 
| 0.4765 | 0.3319 | 75 | 0.4030 | 
| 0.4022 | 0.3982 | 90 | 0.3932 | 
| 0.4234 | 0.4646 | 105 | 0.3856 | 
| 0.4008 | 0.5310 | 120 | 0.3736 | 
| 0.4066 | 0.5973 | 135 | 0.3649 | 
| 0.4007 | 0.6637 | 150 | 0.3568 | 
| 0.4059 | 0.7301 | 165 | 0.3491 | 
| 0.3622 | 0.7965 | 180 | 0.3429 | 
| 0.3655 | 0.8628 | 195 | 0.3388 | 
| 0.3655 | 0.9292 | 210 | 0.3368 | 
| 0.3868 | 0.9956 | 225 | 0.3364 | 
Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.21.0
- Downloads last month
- 1
Model tree for neginashz/star-sft-intellect-instruct-5
Base model
PrimeIntellect/INTELLECT-1
				Finetuned
	
	
PrimeIntellect/INTELLECT-1-Instruct
						