qwen3-0-6b — Cybersecurity QA (LORA 4bit)
Fine-tuned on Kaggle using LORA. (Quant: LoRA + 4-bit (bnb nf4))
Model Summary
- Base:
unsloth/Qwen3-0.6B - Trainable params: 10,092,544 / total 385,941,504
- Train wall time (s): 26460.7
- Files: adapter_model.safetensors + adapter_config.json (LoRA) + tokenizer files
Data
- Dataset:
zobayer0x01/cybersecurity-qa - Samples: total=42427, train=38184, val=1200
- Prompting: Chat template with a fixed system prompt:
You are a helpful assistant specialized in cybersecurity Q&A.
Training Config
| Field | Value |
|---|---|
| Method | LORA |
| Precision | fp16 |
| Quantization | LoRA + 4-bit (bnb nf4) |
| Mode | steps |
| Num Epochs | 1 |
| Max Steps | 3000 |
| Eval Steps | 400 |
| Save Steps | 400 |
| LR | 0.0001 |
| Max Length | 768 |
| per_device_batch_size | 1 |
| grad_accum | 8 |
Evaluation (greedy, fixed-length decode)
| Metric | Score |
|---|---|
| BLEU-4 | 1.67 |
| ROUGE-L | 13.57 |
| F1 (token-level) | 26.53 |
| chrF++ | 21.35 |
| BERTScore F1 | 82.68 |
| Perplexity | 17.08 |
Notes: We normalize whitespace/punctuations, compute token-level P/R/F1, and use
evaluate'ssacrebleu/rouge/chrf/bertscore.
How to use
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
tok = AutoTokenizer.from_pretrained("nhonhoccode/qwen3-0-6b-cybersecqa-lora-4bit-20251111-1916")
base = AutoModelForCausalLM.from_pretrained("unsloth/Qwen3-0.6B")
mdl = PeftModel.from_pretrained(base, "nhonhoccode/qwen3-0-6b-cybersecqa-lora-4bit-20251111-1916") # Loads LoRA adapter
prompt = tok.apply_chat_template(
[{"role":"system","content":"You are a helpful assistant specialized in cybersecurity Q&A."},
{"role":"user","content":"Explain SQL injection in one paragraph."}],
tokenize=False, add_generation_prompt=True
)
ids = tok(prompt, return_tensors="pt").input_ids
out = mdl.generate(ids, max_new_tokens=128, do_sample=False)
print(tok.decode(out[0][ids.shape[-1]:], skip_special_tokens=True))
Intended Use & Limitations
- Domain: cybersecurity Q&A; not guaranteed to be accurate for legal/medical purposes.
- The model can hallucinate or produce outdated guidance—verify before applying in production.
- Safety: No explicit content filtering. Add guardrails (moderation, retrieval augmentation) for deployment.
Reproducibility (env)
transformers>=4.43,<5,accelerate>=0.33,<0.34,peft>=0.11,<0.13,datasets>=2.18,<3,evaluate>=0.4,<0.5,rouge-score,sacrebleu,huggingface_hub>=0.23,<0.26,bitsandbytes- GPU: T4-class; LoRA recommended for low VRAM.
Changelog
- 2025-11-11 19:16 — Initial release (LORA-4bit)