SentenceTransformer based on answerdotai/ModernBERT-large
This is a sentence-transformers model finetuned from answerdotai/ModernBERT-large on the stsb dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: answerdotai/ModernBERT-large
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("nickprock/ModernBERT-large-sts")
# Run inference
sentences = [
'While Queen may refer to both Queen regent (sovereign) or Queen consort, the King has always been the sovereign.',
'There is a very good reason not to refer to the Queen\'s spouse as "King" - because they aren\'t the King.',
'A man sitting on the floor in a room is strumming a guitar.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Datasets:
sts-devandsts-test - Evaluated with
EmbeddingSimilarityEvaluator
| Metric | sts-dev | sts-test |
|---|---|---|
| pearson_cosine | 0.8806 | 0.8505 |
| spearman_cosine | 0.8877 | 0.8678 |
Training Details
Training Dataset
stsb
- Dataset: stsb at ab7a5ac
- Size: 5,749 training samples
- Columns:
sentence1,sentence2, andscore - Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 6 tokens
- mean: 10.16 tokens
- max: 28 tokens
- min: 6 tokens
- mean: 10.12 tokens
- max: 25 tokens
- min: 0.0
- mean: 0.45
- max: 1.0
- Samples:
sentence1 sentence2 score A plane is taking off.An air plane is taking off.1.0A man is playing a large flute.A man is playing a flute.0.76A man is spreading shreded cheese on a pizza.A man is spreading shredded cheese on an uncooked pizza.0.76 - Loss:
MatryoshkaLosswith these parameters:{ "loss": "CoSENTLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Evaluation Dataset
stsb
- Dataset: stsb at ab7a5ac
- Size: 1,500 evaluation samples
- Columns:
sentence1,sentence2, andscore - Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 5 tokens
- mean: 15.11 tokens
- max: 44 tokens
- min: 6 tokens
- mean: 15.1 tokens
- max: 50 tokens
- min: 0.0
- mean: 0.42
- max: 1.0
- Samples:
sentence1 sentence2 score A man with a hard hat is dancing.A man wearing a hard hat is dancing.1.0A young child is riding a horse.A child is riding a horse.0.95A man is feeding a mouse to a snake.The man is feeding a mouse to the snake.1.0 - Loss:
MatryoshkaLosswith these parameters:{ "loss": "CoSENTLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 16per_device_eval_batch_size: 16num_train_epochs: 10warmup_ratio: 0.1fp16: Truebatch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 10max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | Validation Loss | sts-dev_spearman_cosine | sts-test_spearman_cosine |
|---|---|---|---|---|---|
| 0.2778 | 100 | 25.6058 | 22.1112 | 0.7926 | - |
| 0.5556 | 200 | 21.8238 | 21.6575 | 0.8499 | - |
| 0.8333 | 300 | 21.633 | 21.2353 | 0.8684 | - |
| 1.1111 | 400 | 22.3829 | 21.8035 | 0.8373 | - |
| 1.3889 | 500 | 22.0584 | 23.0027 | 0.8228 | - |
| 1.6667 | 600 | 21.6662 | 22.3269 | 0.8545 | - |
| 1.9444 | 700 | 21.2545 | 21.3335 | 0.8592 | - |
| 2.2222 | 800 | 20.5104 | 21.8647 | 0.8580 | - |
| 2.5 | 900 | 20.8763 | 21.8435 | 0.8631 | - |
| 2.7778 | 1000 | 20.3502 | 21.9781 | 0.8682 | - |
| 3.0556 | 1100 | 20.1262 | 22.3008 | 0.8662 | - |
| 3.3333 | 1200 | 20.0832 | 21.4932 | 0.8733 | - |
| 3.6111 | 1300 | 19.8407 | 22.9816 | 0.8661 | - |
| 3.8889 | 1400 | 20.027 | 22.3290 | 0.8729 | - |
| 4.1667 | 1500 | 19.2652 | 23.7340 | 0.8718 | - |
| 4.4444 | 1600 | 19.5304 | 23.4634 | 0.8766 | - |
| 4.7222 | 1700 | 19.6657 | 23.3991 | 0.8764 | - |
| 5.0 | 1800 | 18.8885 | 24.1863 | 0.8825 | - |
| 5.2778 | 1900 | 19.1028 | 23.9508 | 0.8781 | - |
| 5.5556 | 2000 | 19.0076 | 23.6006 | 0.8814 | - |
| 5.8333 | 2100 | 18.472 | 24.0162 | 0.8786 | - |
| 6.1111 | 2200 | 18.3949 | 24.2914 | 0.8839 | - |
| 6.3889 | 2300 | 17.6192 | 26.2586 | 0.8785 | - |
| 6.6667 | 2400 | 18.0109 | 25.8655 | 0.8820 | - |
| 6.9444 | 2500 | 17.8948 | 24.8124 | 0.8830 | - |
| 7.2222 | 2600 | 17.6087 | 26.6571 | 0.8837 | - |
| 7.5 | 2700 | 17.1578 | 26.9229 | 0.8838 | - |
| 7.7778 | 2800 | 17.0154 | 27.1973 | 0.8850 | - |
| 8.0556 | 2900 | 16.5323 | 28.2881 | 0.8836 | - |
| 8.3333 | 3000 | 16.0817 | 28.4812 | 0.8874 | - |
| 8.6111 | 3100 | 16.1146 | 29.0393 | 0.8869 | - |
| 8.8889 | 3200 | 16.0888 | 29.6142 | 0.8872 | - |
| 9.1667 | 3300 | 15.7132 | 30.1223 | 0.8873 | - |
| 9.4444 | 3400 | 15.2933 | 30.4500 | 0.8870 | - |
| 9.7222 | 3500 | 14.7292 | 30.8898 | 0.8876 | - |
| 10.0 | 3600 | 15.1894 | 30.9508 | 0.8877 | - |
| -1 | -1 | - | - | - | 0.8678 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.4.0.dev0
- Transformers: 4.49.0.dev0
- PyTorch: 2.4.1+cu121
- Accelerate: 0.34.2
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}
- Downloads last month
- 4
Model tree for nickprock/ModernBERT-large-sts
Base model
answerdotai/ModernBERT-largeDataset used to train nickprock/ModernBERT-large-sts
Evaluation results
- Pearson Cosine on sts devself-reported0.881
- Spearman Cosine on sts devself-reported0.888
- Pearson Cosine on sts testself-reported0.851
- Spearman Cosine on sts testself-reported0.868