DeepSeek-R1-Distill-Qwen-32B-NVFP4
Model Overview
- Model Architecture: DeepSeek-R1-Distill-Qwen-32B- Input: Text / Image
- Output: Text
 
- Model Optimizations:- Weight quantization: FP4
- Activation quantization: FP4
 
- Release Date: 7/30/25
- Version: 1.0
- Model Developers: RedHatAI
This model is a quantized version of DeepSeek-R1-Distill-Qwen-32B. It was evaluated on a several tasks to assess the its quality in comparison to the unquatized model.
Model Optimizations
This model was obtained by quantizing the weights and activations of DeepSeek-R1-Distill-Qwen-32B to FP4 data type, ready for inference with vLLM>=0.9.1 This optimization reduces the number of bits per parameter from 16 to 4, reducing the disk size and GPU memory requirements by approximately 25%.
Only the weights of the linear operators within transformers blocks are quantized using LLM Compressor.
Deployment
Use with vLLM
This model can be deployed efficiently using the vLLM backend, as shown in the example below.
Model Usage Code
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer
model_id = "RedHatAI/DeepSeek-R1-Distill-Qwen-32B-NVFP4"
number_gpus = 2
sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256)
tokenizer = AutoTokenizer.from_pretrained(model_id)
messages = [
    {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
    {"role": "user", "content": "Who are you?"},
]
prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
llm = LLM(model=model_id, tensor_parallel_size=number_gpus)
outputs = llm.generate(prompts, sampling_params)
generated_text = outputs[0].outputs[0].text
print(generated_text)
vLLM aslo supports OpenAI-compatible serving. See the documentation for more details.
Creation
This model was created by applying LLM Compressor with calibration samples from neuralmagic/calibration dataset, as presented in the code snipet below.
Model Creation Code
Evaluation
This model was evaluated on the well-known OpenLLM v1 and HumanEval_64 benchmarks using lm-evaluation-harness. The Reasoning evals were done using ligheval.
Accuracy
| Category | Metric | DeepSeek-R1-Distill-Qwen-32B | DeepSeek-R1-Distill-Qwen-32B NVFP4 | Recovery | 
|---|---|---|---|---|
| OpenLLM V1 | arc_challenge | 63.48 | 62.12 | 97.86 | 
| gsm8k | 86.88 | 88.32 | 101.66 | |
| hellaswag | 83.51 | 82.38 | 98.65 | |
| mmlu | 80.97 | 80.42 | 99.32 | |
| truthfulqa_mc2 | 56.82 | 55.75 | 98.12 | |
| winogrande | 75.93 | 75.14 | 98.96 | |
| Average | 74.60 | 74.02 | 99.23 | |
| Reasoning | AIME24 (0-shot) | 72.41 | 62.07 | 85.69 | 
| AIME25 (0-shot) | 58.62 | 62.07 | 105.89 | |
| GPQA (Diamond, 0-shot) | 68.02 | 65.48 | 96.27 | |
| Average | 66.35 | 63.21 | 95.95 | |
| Coding | HumanEval_64 pass@2 | 90.00 | 89.32 | 99.24 | 
Reproduction
The results were obtained using the following commands:
Model Evaluation Commands
OpenLLM v1
lm_eval \
  --model vllm \
  --model_args pretrained="RedHatAI/DeepSeek-R1-Distill-Qwen-32B-NVFP4",dtype=auto,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True\
  --apply_chat_template \
  --fewshot_as_multiturn \
  --tasks openllm \
  --batch_size auto
HumanEval_64
lm_eval \
  --model vllm \
  --model_args pretrained="RedHatAI/DeepSeek-R1-Distill-Qwen-32B-NVFP4",dtype=auto,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True\
  --apply_chat_template \
  --fewshot_as_multiturn \
  --tasks humaneval_64_instruct \
  --batch_size auto
LightEval
# --- model_args.yaml ---
cat > model_args.yaml <<'YAML'
model_parameters:
  model_name: "RedHatAI/DeepSeek-R1-Distill-Qwen-32B-NVFP4"
  dtype: auto
  gpu_memory_utilization: 0.9
  tensor_parallel_size: 2
  max_model_length: 40960
  generation_parameters:
    seed: 42
    temperature: 0.6
    top_k: 50
    top_p: 0.95
    min_p: 0.0
    max_new_tokens: 32768
YAML
lighteval vllm model_args.yaml \
  "lighteval|aime24|0,lighteval|aime25|0,lighteval|gpqa:diamond|0" \
  --max-samples -1 \
  --output-dir out_dir
- Downloads last month
- 50
Model tree for nm-testing/DeepSeek-R1-Distill-Qwen-32B-NVFP4
Base model
deepseek-ai/DeepSeek-R1-Distill-Qwen-32B