DeepSeek-R1-Distill-Qwen-32B-NVFP4

Model Overview

  • Model Architecture: DeepSeek-R1-Distill-Qwen-32B
    • Input: Text / Image
    • Output: Text
  • Model Optimizations:
    • Weight quantization: FP4
    • Activation quantization: FP4
  • Release Date: 7/30/25
  • Version: 1.0
  • Model Developers: RedHatAI

This model is a quantized version of DeepSeek-R1-Distill-Qwen-32B. It was evaluated on a several tasks to assess the its quality in comparison to the unquatized model.

Model Optimizations

This model was obtained by quantizing the weights and activations of DeepSeek-R1-Distill-Qwen-32B to FP4 data type, ready for inference with vLLM>=0.9.1 This optimization reduces the number of bits per parameter from 16 to 4, reducing the disk size and GPU memory requirements by approximately 25%.

Only the weights of the linear operators within transformers blocks are quantized using LLM Compressor.

Deployment

Use with vLLM

This model can be deployed efficiently using the vLLM backend, as shown in the example below.

Model Usage Code
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer

model_id = "RedHatAI/DeepSeek-R1-Distill-Qwen-32B-NVFP4"
number_gpus = 2

sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256)

tokenizer = AutoTokenizer.from_pretrained(model_id)

messages = [
    {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
    {"role": "user", "content": "Who are you?"},
]

prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)

llm = LLM(model=model_id, tensor_parallel_size=number_gpus)

outputs = llm.generate(prompts, sampling_params)

generated_text = outputs[0].outputs[0].text
print(generated_text)

vLLM aslo supports OpenAI-compatible serving. See the documentation for more details.

Creation

This model was created by applying LLM Compressor with calibration samples from neuralmagic/calibration dataset, as presented in the code snipet below.

Model Creation Code

Evaluation

This model was evaluated on the well-known OpenLLM v1 and HumanEval_64 benchmarks using lm-evaluation-harness. The Reasoning evals were done using ligheval.

Accuracy

Category Metric DeepSeek-R1-Distill-Qwen-32B DeepSeek-R1-Distill-Qwen-32B NVFP4 Recovery
OpenLLM V1 arc_challenge 63.48 62.12 97.86
gsm8k 86.88 88.32 101.66
hellaswag 83.51 82.38 98.65
mmlu 80.97 80.42 99.32
truthfulqa_mc2 56.82 55.75 98.12
winogrande 75.93 75.14 98.96
Average 74.60 74.02 99.23
Reasoning AIME24 (0-shot) 72.41 62.07 85.69
AIME25 (0-shot) 58.62 62.07 105.89
GPQA (Diamond, 0-shot) 68.02 65.48 96.27
Average 66.35 63.21 95.95
Coding HumanEval_64 pass@2 90.00 89.32 99.24

Reproduction

The results were obtained using the following commands:

Model Evaluation Commands

OpenLLM v1

lm_eval \
  --model vllm \
  --model_args pretrained="RedHatAI/DeepSeek-R1-Distill-Qwen-32B-NVFP4",dtype=auto,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True\
  --apply_chat_template \
  --fewshot_as_multiturn \
  --tasks openllm \
  --batch_size auto

HumanEval_64

lm_eval \
  --model vllm \
  --model_args pretrained="RedHatAI/DeepSeek-R1-Distill-Qwen-32B-NVFP4",dtype=auto,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True\
  --apply_chat_template \
  --fewshot_as_multiturn \
  --tasks humaneval_64_instruct \
  --batch_size auto

LightEval

# --- model_args.yaml ---
cat > model_args.yaml <<'YAML'
model_parameters:
  model_name: "RedHatAI/DeepSeek-R1-Distill-Qwen-32B-NVFP4"
  dtype: auto
  gpu_memory_utilization: 0.9
  tensor_parallel_size: 2
  max_model_length: 40960
  generation_parameters:
    seed: 42
    temperature: 0.6
    top_k: 50
    top_p: 0.95
    min_p: 0.0
    max_new_tokens: 32768
YAML

lighteval vllm model_args.yaml \
  "lighteval|aime24|0,lighteval|aime25|0,lighteval|gpqa:diamond|0" \
  --max-samples -1 \
  --output-dir out_dir
Downloads last month
50
Safetensors
Model size
19B params
Tensor type
BF16
·
F32
·
F8_E4M3
·
U8
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for nm-testing/DeepSeek-R1-Distill-Qwen-32B-NVFP4

Quantized
(144)
this model