bert-finetuned-ner
This model is a fine-tuned version of BAAI/bge-small-en-v1.5 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1007
- Precision: 0.9291
- Recall: 0.9130
- F1: 0.9210
- Accuracy: 0.9820
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.373713206635396e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3.0
Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|---|---|---|---|---|---|---|---|
| 0.041 | 1.0 | 2500 | 0.1118 | 0.9196 | 0.8898 | 0.9045 | 0.9778 |
| 0.0196 | 2.0 | 5000 | 0.1021 | 0.9244 | 0.9117 | 0.9180 | 0.9813 |
| 0.0129 | 3.0 | 7500 | 0.1007 | 0.9291 | 0.9130 | 0.9210 | 0.9820 |
Framework versions
- Transformers 4.50.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 2
Model tree for olegaris256/bert-finetuned-ner
Base model
BAAI/bge-small-en-v1.5