ooliverz's picture
End of training
d0e534c verified
|
raw
history blame
5.13 kB
metadata
library_name: transformers
license: mit
base_model: microsoft/git-large-r-coco
tags:
  - generated_from_trainer
datasets:
  - imagefolder
model-index:
  - name: git-large-r-coco-IDB_ADv1_COCO
    results: []

git-large-r-coco-IDB_ADv1_COCO

This model is a fine-tuned version of microsoft/git-large-r-coco on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1340
  • Meteor Score: {'meteor': 0.5103395242652348}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 1024
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • num_epochs: 200
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Meteor Score
4.8755 5.0 5 4.6208 {'meteor': 0.41234022080924504}
4.577 10.0 10 4.2632 {'meteor': 0.462553330633559}
4.228 15.0 15 3.9351 {'meteor': 0.4637035445872813}
3.8968 20.0 20 3.6117 {'meteor': 0.4716545164583618}
3.5731 25.0 25 3.2943 {'meteor': 0.4775515760416854}
3.2551 30.0 30 2.9844 {'meteor': 0.4827646049987953}
2.9433 35.0 35 2.6819 {'meteor': 0.4820540318646651}
2.6406 40.0 40 2.3893 {'meteor': 0.48387008867521647}
2.348 45.0 45 2.1093 {'meteor': 0.48688764217538394}
2.0685 50.0 50 1.8438 {'meteor': 0.48840003275775357}
1.8052 55.0 55 1.5954 {'meteor': 0.49229450416352066}
1.5592 60.0 60 1.3681 {'meteor': 0.49462336346473573}
1.3335 65.0 65 1.1642 {'meteor': 0.4943789886645904}
1.1308 70.0 70 0.9838 {'meteor': 0.4932081022324161}
0.9511 75.0 75 0.8281 {'meteor': 0.4949580448605414}
0.7953 80.0 80 0.6959 {'meteor': 0.4945236890902709}
0.6629 85.0 85 0.5849 {'meteor': 0.49613363555493917}
0.5518 90.0 90 0.4970 {'meteor': 0.49476521946537905}
0.4599 95.0 95 0.4203 {'meteor': 0.49694213467111825}
0.3856 100.0 100 0.3609 {'meteor': 0.5023234677593583}
0.3248 105.0 105 0.3137 {'meteor': 0.49291655975794224}
0.2756 110.0 110 0.2757 {'meteor': 0.49187607478517975}
0.236 115.0 115 0.2432 {'meteor': 0.4999076360911653}
0.2039 120.0 120 0.2196 {'meteor': 0.5054381333125716}
0.1782 125.0 125 0.2006 {'meteor': 0.4998272338605217}
0.1576 130.0 130 0.1864 {'meteor': 0.5095656338179543}
0.1411 135.0 135 0.1755 {'meteor': 0.5030929069103355}
0.1279 140.0 140 0.1653 {'meteor': 0.5097532440481348}
0.1173 145.0 145 0.1576 {'meteor': 0.5126165420799782}
0.1088 150.0 150 0.1516 {'meteor': 0.5168283983418568}
0.1023 155.0 155 0.1462 {'meteor': 0.5145210432669091}
0.097 160.0 160 0.1424 {'meteor': 0.5135483205500848}
0.0929 165.0 165 0.1399 {'meteor': 0.5099977164420265}
0.0899 170.0 170 0.1384 {'meteor': 0.5093303675700068}
0.0876 175.0 175 0.1369 {'meteor': 0.5097771482308939}
0.086 180.0 180 0.1357 {'meteor': 0.5080664663529372}
0.085 185.0 185 0.1347 {'meteor': 0.5101483486776783}
0.0843 190.0 190 0.1342 {'meteor': 0.5110798690668398}
0.0839 195.0 195 0.1340 {'meteor': 0.5102824562761434}
0.0838 200.0 200 0.1340 {'meteor': 0.5103395242652348}

Framework versions

  • Transformers 4.46.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.20.2