AI & ML interests

Fast Waveform Music Generation

prithivMLmods 
posted an update 3 days ago
view post
Post
4667
Explore OCR, Captioning, and Visual Understanding with Cutting-Edge Models on Hugging Face. 🤗🧪

I’ve put together a collection of Google Colab notebooks to experiment with some of the most exciting models available on the Hugging Face Hub focused on OCR, image captioning, and visual understanding tasks. [Image-to-Text] / [Image-Text-to-Text]

> 📖 OCR-ReportLab-Notebooks : prithivMLmods/OCR-ReportLab-Notebooks

These notebooks are built for quick prototyping and run on free T4 GPUs, making them perfect for experimentation, testing ideas, or just exploring what’s possible with modern vision-language models.

Note: The experimental notebooks are compiled with models that fit within the T4 GPU (free-tier) limits. More models along with their notebooks will be added over time.
prithivMLmods 
posted an update 5 days ago
view post
Post
2303
Excited to introduce the new experimental model "Qwen2.5-VL-7B-Abliterated-Caption-it", which is performing exceptionally well on image captioning tasks. This variant is specifically tailored for Abliterated Captioning and Uncensored Image Captioning. It is designed to generate highly detailed and descriptive captions across a broad range of visual categories including images with complex, sensitive, or nuanced content while handling varying aspect ratios and resolutions.🧪🤗

✨ Try the demo here : prithivMLmods/Qwen2.5-VL
✨ Qwen2.5-VL-7B-Abliterated-Caption-it : prithivMLmods/Qwen2.5-VL-7B-Abliterated-Caption-it
✨ Multimodal VLMs : prithivMLmods/multimodal-vlms-until-july25-688312e6b840e1e156f13027
✨ Multimodal Implementations : prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0

.
.
.
To know more about it, visit the model card of the respective model. !!
prithivMLmods 
posted an update 6 days ago
view post
Post
2332
olmOCR [Allen AI] just got an upgrade! 📈🧑‍🍳

The allenai/olmOCR-7B-0725 — fine-tuned with allenai/olmOCR-mix-0225 on top of Qwen/Qwen2.5-VL-7B-Instruct, pushing the boundaries of OCR technology. It takes a single document image as input, with the longest side resized to 1288 pixels. High-quality, openly available approach to parsing pdfs and other complex documents optical character recognition.

Try the demo here: prithivMLmods/Multimodal-OCR

✨ Model: allenai/olmOCR-7B-0725
✨ Model [fp8]: allenai/olmOCR-7B-0725-FP8
✨ Multimodal Implementations Space Collection: prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0

.
.
.
To know more about it, visit the model card of the respective model. !!
AtAndDev 
posted an update 7 days ago
view post
Post
264
Qwen 3 Coder is a personal attack to k2, and I love it.
It achieves near SOTA on LCB while not having reasoning.
Finally people are understanding that reasoning isnt necessary for high benches...

Qwen ftw!

DECENTRALIZE DECENTRALIZE DECENTRALIZE
prithivMLmods 
posted an update 10 days ago
view post
Post
5058
Upgraded the step-by-step notebook for fine-tuning SigLIP2 on domain-specific image classification tasks. The notebook supports both datasets with predefined train/test splits and those with only a train split, making it suitable for low-resource, custom, and real-world classification scenarios. 📢👉

➺ FineTuning-SigLIP2-Notebook : prithivMLmods/FineTuning-SigLIP2-Notebook

➺ GitHub : https://github.com/PRITHIVSAKTHIUR/FineTuning-SigLIP-2

➺ In the first, datasets include predefined train and test splits, enabling conventional supervised learning and generalization evaluation : prithivMLmods/FineTuning-SigLIP2-Notebook (.ipynb)

➺ In the second scenario, only a training split is available; in such cases, the training set is either partially reserved for validation or reused entirely for evaluation : prithivMLmods/FineTuning-SigLIP2-Notebook (.ipynb)

This flexibility supports experimentation in constrained or domain-specific settings, where standard test annotations may not exist.
prithivMLmods 
posted an update 11 days ago
view post
Post
4050
Dropping the general-purpose reasoning dataset Poseidon-Reasoning-5M, which supports general thought processes, math, and science — featuring a diverse mixture of domains 🌊 : prithivMLmods/Poseidon-Reasoning-5M

from datasets import load_dataset

dataset = load_dataset("prithivMLmods/Poseidon-Reasoning-5M", split="data")

The compact version is as follows — Poseidon-Reasoning-Mini-300K : prithivMLmods/Poseidon-Reasoning-Mini-300K


from datasets import load_dataset

dataset = load_dataset("prithivMLmods/Poseidon-Reasoning-Mini-300K", split="train")


Collection : prithivMLmods/poseidon-reasoning-6879ca98e118b307c781a9ba
prithivMLmods 
posted an update 15 days ago
view post
Post
2160
Open Omega Ω (Forge, Atom, Explora):
A Fusion of Math, Science, and Coding 🧪🤗

Datasets :
⌯⌲ Open-Omega-Forge-1M [Mathematics, Coding, and Science]: prithivMLmods/Open-Omega-Forge-1M
⌯⌲ Open-Omega-Atom-1.5M [Mathematics and Science]: prithivMLmods/Open-Omega-Atom-1.5M
⌯⌲ Open-Omega-Explora-2.5M [Forge + Atom]: prithivMLmods/Open-Omega-Explora-2.5M
⌯⌲ Others [Subordinate portion] - Curated and blended modular dataset.

Models :
> Omega-Qwen3-Atom-8B : prithivMLmods/Omega-Qwen3-Atom-8B
> Omega-Qwen2.5-Coder-3B : prithivMLmods/Omega-Qwen2.5-Coder-3B

Dataset Collection: prithivMLmods/open-omega-a-fusion-of-math-science-and-coding-68756c37769fa39c4055cc0e

.
.
.
For more information, refer to the dataset card(s).

prithivMLmods 
posted an update 17 days ago
view post
Post
3820
Excited to bring the new models that are performing exceptionally well in document OCR, image captioning, and visual understanding tasks. Megalodon-OCR and Perseus-Doc-VL have both demonstrated significant improvements across key areas. You can explore live demos on Hugging Face Spaces to compare their performance with other top-tier models available on the hub. 🤗📄

Models & Spaces :
> Megalodon-OCR (3B) : prithivMLmods/Megalodon-OCR-Sync-0713
> Perseus-Doc-vl (7B): prithivMLmods/Perseus-Doc-vl-0712
> Doc-VLMs-OCR : prithivMLmods/Doc-VLMs-OCR
> core-OCR : prithivMLmods/core-OCR


Datasets Caption Mix :
> Corvus-OCR-Caption-Mix : prithivMLmods/Corvus-OCR-Caption-Mix
> Corvus-OCR-Caption-Mini-Mix : prithivMLmods/Corvus-OCR-Caption-Mini-Mix

Collections :
> Corvus OCR Caption Mix: prithivMLmods/corvus-ocr-caption-mix-687349bfaceffbd10976f0cc
> Captioning / OCR / DocTable : prithivMLmods/captioning-ocr-doctable-687382e1da822008bb5c06f2

GitHub :
> OCR-ReportLab : https://github.com/PRITHIVSAKTHIUR/OCR-ReportLab/blob/main/Megalodon-OCR-Sync-0713-ColabNotebook/Megalodon_OCR_Sync_0713_ReportLab.ipynb

Others Spaces :
> Multimodal-OCR : prithivMLmods/Multimodal-OCR
> Multimodal-VLMs : https://huggingface.co/spaces/prithivMLmods/Multimodal-VLMs
> Multimodal-OCR2 : prithivMLmods/Multimodal-OCR2
> Florence-2-Image-Caption : prithivMLmods/Florence-2-Image-Caption
> VisionScope-R2 : prithivMLmods/VisionScope-R2
> DocScope-R1 : prithivMLmods/DocScope-R1

.
.
.
To know more about it, visit the model card of the respective model. !!
prithivMLmods 
posted an update 21 days ago
view post
Post
2382
Demo of OCR & Math QA using multi-capable VLMs like MonkeyOCR-pro-1.2B, R1-One-Vision, VisionaryR1, Vision Matters-7B, and VIGAL-7B, all running together with support for both image and video inference. 🪐

✦ Demo Spaces :
⤷ Multimodal VLMs : https://huggingface.co/spaces/prithivMLmods/Multimodal-VLMs

✦ Models :
⤷ Visionary R1 : maifoundations/Visionary-R1
⤷ MonkeyOCR [1.2B] : echo840/MonkeyOCR-pro-1.2B
⤷ ViGaL 7B : yunfeixie/ViGaL-7B
⤷ Lh41-1042-Magellanic-7B-0711 : prithivMLmods/Lh41-1042-Magellanic-7B-0711
⤷ Vision Matters 7B : Yuting6/Vision-Matters-7B
⤷ WR30a-Deep-7B-0711 : prithivMLmods/WR30a-Deep-7B-0711

✦ MonkeyOCR-pro-1.2B Colab T4 Demo [ notebook ]
⤷ MonkeyOCR-pro-1.2B-ReportLab : https://github.com/PRITHIVSAKTHIUR/OCR-ReportLab/blob/main/MonkeyOCR-0709/MonkeyOCR-pro-1.2B-ReportLab.ipynb

✦ GitHub : https://github.com/PRITHIVSAKTHIUR/OCR-ReportLab

The community GPU grant was given by Hugging Face — special thanks to them.🤗🚀

.
.
.
To know more about it, visit the model card of the respective model. !!
prithivMLmods 
posted an update 27 days ago
view post
Post
3556
Multimodal OCR with ReportLab? On Colab T4? (Nanonets OCR, Monkey OCR, OCRFlux 3B, Typhoo OCR 3B?) .. Yeah, it’s possible. I’ve made a dedicated Colab notebook to experiment with these models (all built on top of Qwen2.5 VL). 🤗🚀

Download notebooks here :

✦︎ NanonetsOCR : https://colab.research.google.com/drive/1VvA-amvSVxGdWgIsh4_by6KWOtEs_Iqp
✦︎ MonkeyOCR : https://colab.research.google.com/drive/1vPCojbmlXjDFUt06FJ1tjgnj_zWK4mUo
✦︎ OCRFluxOCR : https://colab.research.google.com/drive/1TDoCXzWdF2hxVLbISqW6DjXAzOyI7pzf
✦︎ TyphoonOCR : https://colab.research.google.com/drive/1_59zvLNnn1kvbiSFxzA1WiqhpbW8RKbz

🜲 Github : https://github.com/PRITHIVSAKTHIUR/OCR-ReportLab-Notebooks

What does it do?

1. Performs OCR on the input image
2. Generates a DOCX or PDF file with the input image and the extracted text

.
.
.
To know more about it, visit the model card of the respective model. !!
prithivMLmods 
posted an update 29 days ago
view post
Post
1688
The bunch of comparable demos for Multimodal VLMs (excels in OCR, cinematography understanding, spatial reasoning, etc.) now up on the Hub 🤗 — max recent till Jun'25.

✦ Demo Spaces —

> [Nanonets-OCR-s, MonkeyOCR, Typhoon-OCR-7B, SmolDocling] : prithivMLmods/Multimodal-OCR2
> [GLM-4.1v, docscopeOCR-7B, MonkeyOCR, coreOCR-7B] : prithivMLmods/core-OCR
> [Camel-Doc-OCR, ViLaSR-7B, OCRFlux-3B, ShotVL-7B] : https://huggingface.co/spaces/prithivMLmods/Doc-VLMs-v2-Localization
> [SkyCaptioner-V1, SpaceThinker-3B, coreOCR-7B, SpaceOm-3B] : prithivMLmods/VisionScope-R2
> [RolmOCR-7B, Qwen2-VL-OCR-2B, Aya-Vision-8B, Nanonets-OCR-s] : prithivMLmods/Multimodal-OCR
> [DREX-062225-7B, Typhoon-OCR-3B, olmOCR-7B-0225, VIREX-062225-7B] : prithivMLmods/Doc-VLMs-OCR
> [Cosmos-Reason1-7B, docscopeOCR-7B, Captioner-7B, visionOCR-3B] : prithivMLmods/DocScope-R1

✦ Space Collection : prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0

.
.
.
To know more about it, visit the model card of the respective model. !!
  • 1 reply
·
Nymbo 
posted an update 30 days ago
view post
Post
2206
Anyone know how to reset Claude web's MCP config? I connected mine when the HF MCP first released with just the default example spaces added. I added lots of other MCP spaces but Claude.ai doesn't update the available tools... "Disconnecting" the HF integration does nothing, deleting it and adding it again does nothing.

Refreshing tools works fine in VS Code because I can manually restart it in mcp.json, but claude.ai has no such option. Anyone got any ideas?
·
prithivMLmods 
posted an update about 1 month ago
view post
Post
2439
The demo for Camel-Doc-OCR-062825 (exp) is optimized for document retrieval and direct Markdown (.md) generation from images and PDFs. Additional demos include OCRFlux-3B (document OCR), VilaSR (spatial reasoning with visual drawing), and ShotVL (cinematic language understanding). 🐪

✦ Space : https://huggingface.co/spaces/prithivMLmods/Doc-VLMs-v2-Localization

Models :
⤷ camel-doc-ocr-062825 : prithivMLmods/Camel-Doc-OCR-062825
⤷ ocrflux-3b : ChatDOC/OCRFlux-3B
⤷ vilasr : AntResearchNLP/ViLaSR
⤷ shotvl : Vchitect/ShotVL-7B

⤷ Multimodal Implementations : prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0

The community GPU grant was given by Hugging Face — special thanks to them. This space supports the following tasks: (image inference, video inference) with result markdown canvas and object detection/localization. 🤗🚀

.
.
.
To know more about it, visit the model card of the respective model. !!
prithivMLmods 
posted an update about 1 month ago
view post
Post
1997
The demo for DREX-062225-exp (Document Retrieval and Extraction eXpert ~ experimental) / typhoon-ocr-3b (a bilingual document parsing model built specifically for real-world documents) / VIREX-062225-exp (Video Information Retrieval and Extraction eXpert ~ experimental) / olmOCR-7B-0225-preview (the document parsing model based on Qwen2VL). 🤗

✦ Demo : prithivMLmods/Doc-VLMs-OCR ~ ( with .md canvas )

⤷ DREX-062225-exp : prithivMLmods/DREX-062225-exp
⤷ typhoon-ocr-3b : scb10x/typhoon-ocr-3b
⤷ VIREX-062225-exp : prithivMLmods/VIREX-062225-exp
⤷ olmOCR-7B-0225-preview : allenai/olmOCR-7B-0225-preview

⤷ Collection : prithivMLmods/doc-vl-685839064a863e1cd23be3f1
⤷ Multimodal Implementations : prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0
.
.
.

To know more about it, visit the model card of the respective model. !!
·
prithivMLmods 
posted an update about 1 month ago
view post
Post
2710
Updated the docscopeOCR-7B-050425-exp with the DREX-062225-exp, with improved preciseness in table structure and line spacing in the markdown used on the document page. And though this is still an experimental one, it's expected to perform well in the defined DREX use cases [ Document Retrieval and Extraction eXpert – experimental ocr ]. 💻

⤷ Model : prithivMLmods/DREX-062225-exp
⤷ Demo : prithivMLmods/Doc-VLMs-OCR

⤷ Collection : prithivMLmods/doc-vl-685839064a863e1cd23be3f1
⤷ Multimodal Implementations : prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0
⤷ Git : https://github.com/PRITHIVSAKTHIUR/DREX.git
.
.
.

To know more about it, visit the model card of the respective model. !!
prithivMLmods 
posted an update about 1 month ago
view post
Post
1939
The demo for smoldocling / nanonets ocr / typhoon ocr / monkey ocr explores the document OCR capabilities of various newly released multimodal VLMs in a single space. And if you're experiencing or demoing long document image OCR, kindly use the Smoldocling 256M preview [ Smoldocling is back in demo here. ] 🤗.

✦ Try the demo here : prithivMLmods/Multimodal-OCR2

⤷ MonkeyOCR Recognition : echo840/MonkeyOCR
⤷ Nanonets-OCR-s : nanonets/Nanonets-OCR-s
⤷ SmolDocling-256M-preview : ds4sd/SmolDocling-256M-preview
⤷ typhoon-ocr-7b : scb10x/typhoon-ocr-7b

⤷ Multimodal Implementations : prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0

⤷ Github : https://github.com/PRITHIVSAKTHIUR/Multimodal-OCR2


The community GPU grant was given by Hugging Face — special thanks to them. 🤗🚀



To know more about it, visit the model card of the respective model. !!
  • 2 replies
·
prithivMLmods 
posted an update about 1 month ago
view post
Post
3917
The demo for the MonkeyOCR Recognition model, which adopts a Structure-Recognition-Relation (SRR) triplet paradigm & Nanonets-OCR-s a powerful, state-of-the-art image-to-markdown OCR model that goes far beyond traditional text extraction and other experimental document OCR models, is combined into a single space.

✦ Try the demo here : prithivMLmods/core-OCR
✦ Try Nanonets-OCR-s demo here : prithivMLmods/Multimodal-OCR

⤷ MonkeyOCR Recognition : echo840/MonkeyOCR
⤷ docscopeOCR-7B-050425-exp : prithivMLmods/docscopeOCR-7B-050425-exp
⤷ coreOCR-7B-050325-preview : prithivMLmods/coreOCR-7B-050325-preview
⤷ Nanonets-OCR-s : nanonets/Nanonets-OCR-s

⤷ Multimodal Implementations : prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0

Also, include a sample OCR test using the VisionOCR-3B-061125 model and the Qwen2-VL-OCR-2B-Instruct model.
⤷ Blog : https://huggingface.co/blog/prithivMLmods/visionocr-3b-061125-vs-qwen2-vl-ocr-2b-instruct

To know more about it, visit the model card of the respective model. !!
prithivMLmods 
posted an update 2 months ago
view post
Post
5762
OpenAI, Google, Hugging Face, and Anthropic have released guides and courses on building agents, prompting techniques, scaling AI use cases, and more. Below are 10+ minimalistic guides and courses that may help you in your progress. 📖

⤷ Agents Companion : https://www.kaggle.com/whitepaper-agent-companion
⤷ Building Effective Agents : https://www.anthropic.com/engineering/building-effective-agents
⤷ Guide to building agents by OpenAI : https://cdn.openai.com/business-guides-and-resources/a-practical-guide-to-building-agents.pdf
⤷ Prompt engineering by Google : https://www.kaggle.com/whitepaper-prompt-engineering
⤷ Google: 601 real-world gen AI use cases : https://cloud.google.com/transform/101-real-world-generative-ai-use-cases-from-industry-leaders
⤷ Prompt engineering by IBM : https://www.ibm.com/think/topics/prompt-engineering-guide
⤷ Prompt Engineering by Anthropic : https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/overview
⤷ Scaling AI use cases : https://cdn.openai.com/business-guides-and-resources/identifying-and-scaling-ai-use-cases.pdf
⤷ Prompting Guide 101 : https://services.google.com/fh/files/misc/gemini-for-google-workspace-prompting-guide-101.pdf
⤷ AI in the Enterprise by OpenAI : https://cdn.openai.com/business-guides-and-resources/ai-in-the-enterprise.pdf

by HF🤗 :
⤷ AI Agents Course by Huggingface : https://huggingface.co/learn/agents-course/unit0/introduction
⤷ Smol-agents Docs : https://huggingface.co/docs/smolagents/en/tutorials/building_good_agents
⤷ MCP Course by Huggingface : https://huggingface.co/learn/mcp-course/unit0/introduction
⤷ Other Course (LLM, Computer Vision, Deep RL, Audio, Diffusion, Cookbooks, etc..) : https://huggingface.co/learn
  • 2 replies
·
prithivMLmods 
posted an update 2 months ago
view post
Post
2341
Just made a demo for Cosmos-Reason1, a physical AI model that understands physical common sense and generates appropriate embodied decisions in natural language through long chain-of-thought reasoning. Also added video understanding support to it. 🤗🚀

✦ Try the demo here : prithivMLmods/DocScope-R1

⤷ Cosmos-Reason1-7B : nvidia/Cosmos-Reason1-7B
⤷ docscopeOCR-7B-050425-exp : prithivMLmods/docscopeOCR-7B-050425-exp
⤷ Captioner-Relaxed : Ertugrul/Qwen2.5-VL-7B-Captioner-Relaxed

⤷ Multimodal Implementations : prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0

⤷ GitHub :
https://github.com/PRITHIVSAKTHIUR/Cosmos-x-DocScope
https://github.com/PRITHIVSAKTHIUR/Nvidia-Cosmos-Reason1-Demo.

To know more about it, visit the model card of the respective model. !!
AtAndDev 
posted an update 2 months ago
view post
Post
2893
deepseek-ai/DeepSeek-R1-0528

This is the end
  • 1 reply
·