AI & ML interests

Webhooks are now publicly available on Hugging Face!

Recent Activity

nouamanetaziย 
posted an update 3 days ago
view post
Post
2892
After training ๐’๐ฆ๐จ๐ฅ๐‹๐Œ๐Ÿ‘ on ๐Ÿ‘๐Ÿ–๐Ÿ’ ๐‡๐Ÿ๐ŸŽ๐ŸŽ๐ฌ for nearly a month, I've come to realize something most people overlook: ๐ข๐ง๐Ÿ๐ซ๐š๐ฌ๐ญ๐ซ๐ฎ๐œ๐ญ๐ฎ๐ซ๐ž ๐ข๐ฌ ๐ญ๐ก๐ž ๐ฆ๐š๐ค๐ž-๐จ๐ซ-๐›๐ซ๐ž๐š๐ค ๐Ÿ๐š๐œ๐ญ๐จ๐ซ ๐ข๐ง ๐‹๐‹๐Œ ๐ญ๐ซ๐š๐ข๐ง๐ข๐ง๐ . ๐Ÿ”ฅ

Everyone talks about model architecture and data quality. And yes, those matter immensely. But here's what nobody tells you: when your training run fails at 2 AM because of mysterious ๐๐‚๐‚๐‹ ๐ž๐ซ๐ซ๐จ๐ซ๐ฌ, or when your expensive GPU cluster is running at ๐Ÿ”๐ŸŽ% ๐ž๐Ÿ๐Ÿ๐ข๐œ๐ข๐ž๐ง๐œ๐ฒ, the problem isn't your model. It's most probably a ๐ฆ๐ข๐ฌ๐ฎ๐ฌ๐ž ๐จ๐Ÿ ๐ญ๐ก๐ž ๐ก๐š๐ซ๐๐ฐ๐š๐ซ๐ž. ๐Ÿ› ๏ธ

Questions that seemed simple but had no clear answers: Why is ๐Œ๐จ๐„ ๐ญ๐ซ๐š๐ข๐ง๐ข๐ง๐  ๐ฌ๐ฅ๐จ๐ฐ๐ž๐ซ ๐ญ๐ก๐š๐ง ๐๐ž๐ง๐ฌ๐ž ๐ฆ๐จ๐๐ž๐ฅ๐ฌ? Which ๐๐‚๐‚๐‹ ๐Ÿ๐ฅ๐š๐ ๐ฌ should we actually set? How often should we checkpoint without killing throughput?

That's why we built ๐“๐ก๐ž ๐’๐ฆ๐จ๐ฅ ๐“๐ซ๐š๐ข๐ง๐ข๐ง๐  ๐๐ฅ๐š๐ฒ๐›๐จ๐จ๐ค ๐Ÿ“–: a complete guide covering everything from model architecture and data curation to the SmolLM3 training marathon, post-training techniques, and crucially, the ๐ข๐ง๐Ÿ๐ซ๐š๐ฌ๐ญ๐ซ๐ฎ๐œ๐ญ๐ฎ๐ซ๐ž ๐ฅ๐š๐ฒ๐ž๐ซ that most teams get wrong.

We validated real vs theoretical bandwidth across the entire stack: ๐‡๐๐Œ๐Ÿ‘ ๐ก๐ข๐ญ๐ญ๐ข๐ง๐  ๐Ÿ‘ ๐“๐/๐ฌ, ๐๐•๐‹๐ข๐ง๐ค ๐Ÿ’.๐ŸŽ ๐ซ๐ž๐š๐œ๐ก๐ข๐ง๐  ๐Ÿ•๐Ÿ–๐Ÿ” ๐†๐/๐ฌ, ๐๐‚๐ˆ๐ž ๐†๐ž๐ง๐Ÿ’ ๐š๐ญ ๐Ÿ๐Ÿ’.๐Ÿ ๐†๐/๐ฌ. Then we ran collective operations across ๐Ÿ๐Ÿ๐Ÿ– ๐†๐๐”๐ฌ (16 nodes, 8xH100s each) and measured how performance degrades at scale: all-reduce drops from ๐Ÿ’๐Ÿ–๐ŸŽ ๐†๐/๐ฌ on a single node to ๐Ÿ‘๐Ÿ๐ŸŽ-๐Ÿ‘๐Ÿ“๐ŸŽ ๐†๐/๐ฌ across 16 nodes.

If you've ever wondered why your training runs are slower than they should be, or you're planning to scale up and want to avoid expensive mistakes, this guide might save you weeks of debugging.

๐“๐ก๐ž ๐’๐ฆ๐จ๐ฅ ๐“๐ซ๐š๐ข๐ง๐ข๐ง๐  ๐๐ฅ๐š๐ฒ๐›๐จ๐จ๐ค: https://lnkd.in/e5MKXUHS

Shared with โค๏ธ by the HuggingFace team
mrfakenameย 
posted an update 6 days ago
view post
Post
2941
Trained a model for emotion-controllable TTS based on MiMo audio on LAION's dataset.

Still very early and does have an issue with hallucinating but results seem pretty good so far, given that it is very early into the training run.

Will probably kick off a new run later with some settings tweaked.

Put up a demo here: mrfakename/EmoAct-MiMo

(Turn ๐Ÿ”Š on to hear audio samples)
ยท
davanstrienย 
posted an update 2 months ago
chansungย 
posted an update 4 months ago
view post
Post
4240
YAML engineering becomes more and more important than ever from infra provisioning to model training (recipes).

Here, I built a simple editor first for @dstackai , and I will share the live endpoint this week. Let me know what you think about this approach.

Based on this approach, if people think this is useful, I am going to do the same thing for the LLM training recipes for popular frameworks such as Hugging Face open-r1, Axolotl, and so on. Let me hear.
victorย 
posted an update 5 months ago
view post
Post
6969
Open Source Avengers, Assemble! Ask an expert AI agent team to solve complex problems together ๐Ÿ”ฅ

Consilium brings together multiple agents that debate and use live research (web, arXiv, SEC) to reach a consensus. You set the strategy, they find the answer.

Credit to @azettl for this awesome demo: Agents-MCP-Hackathon/consilium_mcp
  • 2 replies
ยท
davanstrienย 
posted an update 5 months ago
view post
Post
3622
Inspired by Hugging Face's official MCP server, I've developed a complementary tool that exposes my semantic search API to enhance discovery across the HF platform.

Key capabilities:

- AI-powered semantic search for models and datasets
- Parameter count analysis via safetensors metadata
- Trending content discovery
- Find similar models/datasets functionality
- 11 tools total for enhanced ecosystem navigation

The semantic search goes beyond simple keyword matching, understanding context and relationships between different models and datasets.

Example query: "Find around 10 reasoning Hugging Face datasets published in 2025 focusing on topics other than maths and science. Show a link and a short summary for each dataset." (results in video!)

https://github.com/davanstrien/hub-semantic-search-mcp
  • 1 reply
ยท
victorย 
posted an update 6 months ago
view post
Post
5114
DIA TTS is just amazing - please share your funniest gens (here is mine) ๐Ÿ˜‚
nari-labs/Dia-1.6B
  • 1 reply
ยท
davanstrienย 
posted an update 6 months ago
view post
Post
2352
Came across a very nice submission from @marcodsn for the reasoning datasets competition (https://huggingface.co/blog/bespokelabs/reasoning-datasets-competition).

The dataset distils reasoning chains from arXiv research papers in biology and economics. Some nice features of the dataset:

- Extracts both the logical structure AND researcher intuition from academic papers
- Adopts the persona of researchers "before experiments" to capture exploratory thinking
- Provides multi-short and single-long reasoning formats with token budgets - Shows 7.2% improvement on MMLU-Pro Economics when fine-tuning a 3B model

It's created using the Curator framework with plans to scale across more scientific domains and incorporate multi-modal reasoning with charts and mathematics.

I personally am very excited about datasets like this, which involve creativity in their creation and don't just rely on $$$ to produce a big dataset with little novelty.

Dataset can be found here: marcodsn/academic-chains (give it a like!)
davanstrienย 
posted an update 7 months ago
view post
Post
1752
I've created a v1 dataset ( davanstrien/reasoning-required) and model ( davanstrien/ModernBERT-based-Reasoning-Required) to help curate "wild text" data for generating reasoning examples beyond the usual code/math/science domains.

- I developed a "Reasoning Required" dataset with a 0-4 scoring system for reasoning complexity
- I used educational content from HuggingFaceFW/fineweb-edu, adding annotations for domains, reasoning types, and example questions

My approach enables a more efficient workflow: filter text with small models first, then use LLMs only on high-value content.

This significantly reduces computation costs while expanding reasoning dataset domain coverage.