|  | --- | 
					
						
						|  | language: ary | 
					
						
						|  | datasets: | 
					
						
						|  | - mgb5 | 
					
						
						|  | metrics: | 
					
						
						|  | - wer | 
					
						
						|  | tags: | 
					
						
						|  | - audio | 
					
						
						|  | - automatic-speech-recognition | 
					
						
						|  | - speech | 
					
						
						|  | - xlsr-fine-tuning-week | 
					
						
						|  | license: apache-2.0 | 
					
						
						|  | model-index: | 
					
						
						|  | - name: XLSR Wav2Vec2 Moroccan Arabic dialect by Othmane Rifki | 
					
						
						|  | results: | 
					
						
						|  | - task: | 
					
						
						|  | name: Speech Recognition | 
					
						
						|  | type: automatic-speech-recognition | 
					
						
						|  | dataset: | 
					
						
						|  | name: MGB5 from ELDA and https://arabicspeech.org/ | 
					
						
						|  | type: ELDA/mgb5_moroccan | 
					
						
						|  | args: ary | 
					
						
						|  | metrics: | 
					
						
						|  | - name: Test WER | 
					
						
						|  | type: wer | 
					
						
						|  | value: 66.45 | 
					
						
						|  | --- | 
					
						
						|  |  | 
					
						
						|  | # Wav2Vec2-Large-XLSR-53-Moroccan | 
					
						
						|  |  | 
					
						
						|  | Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on [MGB5 Moroccan Arabic](http://www.islrn.org/resources/938-639-614-524-5/) kindly provided by [ELDA](http://www.elra.info/en/about/elda/) and [ArabicSpeech](https://arabicspeech.org/mgb5/). | 
					
						
						|  |  | 
					
						
						|  | In order to have access to MGB5, please request it from ELDA. | 
					
						
						|  |  | 
					
						
						|  | When using this model, make sure that your speech input is sampled at 16kHz. | 
					
						
						|  |  | 
					
						
						|  | ## Usage | 
					
						
						|  |  | 
					
						
						|  | The model can be used directly (without a language model) as follows: | 
					
						
						|  |  | 
					
						
						|  | ```python | 
					
						
						|  | import re | 
					
						
						|  | import torch | 
					
						
						|  | import librosa | 
					
						
						|  | import torchaudio | 
					
						
						|  | from datasets import load_dataset, load_metric | 
					
						
						|  | from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor | 
					
						
						|  | import soundfile as sf | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | dataset = load_dataset("ma_speech_corpus", split="test") | 
					
						
						|  |  | 
					
						
						|  | processor = Wav2Vec2Processor.from_pretrained("othrif/wav2vec2-large-xlsr-moroccan") | 
					
						
						|  | model = Wav2Vec2ForCTC.from_pretrained("othrif/wav2vec2-large-xlsr-moroccan") | 
					
						
						|  | model.to("cuda") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“\\'\\�]' | 
					
						
						|  |  | 
					
						
						|  | def remove_special_characters(batch): | 
					
						
						|  | batch["text"] = re.sub(chars_to_ignore_regex, "", batch["sentence"]).lower() + " " | 
					
						
						|  | return batch | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | dataset = dataset.map(remove_special_characters) | 
					
						
						|  | dataset = dataset.select(range(10)) | 
					
						
						|  |  | 
					
						
						|  | def speech_file_to_array_fn(batch): | 
					
						
						|  | start, stop = batch['segment'].split('_') | 
					
						
						|  | speech_array, sampling_rate = torchaudio.load(batch["path"]) | 
					
						
						|  | speech_array, sampling_rate = sf.read(batch["path"], start=int(float(start) * sampling_rate), | 
					
						
						|  | stop=int(float(stop) * sampling_rate)) | 
					
						
						|  | batch["speech"] = librosa.resample(speech_array, sampling_rate, 16_000) | 
					
						
						|  | batch["sampling_rate"] = 16_000 | 
					
						
						|  | batch["target_text"] = batch["text"] | 
					
						
						|  | return batch | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | dataset = dataset.map( | 
					
						
						|  | speech_file_to_array_fn | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def predict(batch): | 
					
						
						|  | inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) | 
					
						
						|  |  | 
					
						
						|  | with torch.no_grad(): | 
					
						
						|  | logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits | 
					
						
						|  |  | 
					
						
						|  | pred_ids = torch.argmax(logits, dim=-1) | 
					
						
						|  | batch["predicted"] = processor.batch_decode(pred_ids) | 
					
						
						|  | return batch | 
					
						
						|  |  | 
					
						
						|  | dataset = dataset.map(predict, batched=True, batch_size=32) | 
					
						
						|  |  | 
					
						
						|  | for reference, predicted in zip(dataset["sentence"], dataset["predicted"]): | 
					
						
						|  | print("reference:", reference) | 
					
						
						|  | print("predicted:", predicted) | 
					
						
						|  | print("--") | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | Here's the output: | 
					
						
						|  | ``` | 
					
						
						|  | reference: عشرين ألفريال الوحده وشي خمسميه دريال | 
					
						
						|  |  | 
					
						
						|  | predicted: عشرين علف ريا لوحده وشي خمسميات ريال | 
					
						
						|  | -- | 
					
						
						|  | reference: واحد جوج تلاتة ربعه خمسة ستة | 
					
						
						|  |  | 
					
						
						|  | predicted: غيحك تويش تتبة نتاست | 
					
						
						|  | -- | 
					
						
						|  | reference: هي هاديك غتجينا تقريبا ميه وسته وعشرين ألف ريال | 
					
						
						|  |  | 
					
						
						|  | predicted: ياض كتجينا تقريبه ميه أو ستي و عشيناأفرين | 
					
						
						|  | -- | 
					
						
						|  | reference: ###والصرف ليبقا نجيب بيه الصالون فلهوندا... أهاه نديروها علاش لا؟... | 
					
						
						|  |  | 
					
						
						|  | predicted: أواصرف ليبقا نجيب يه اصالون فالهندا أه نديروها علاش لا | 
					
						
						|  | -- | 
					
						
						|  | reference: ###صافي مشات... أنا أختي معندي مندير بهاد صداع الراس... | 
					
						
						|  |  | 
					
						
						|  | predicted: صافي مشات أنا خصي معندي مندير بهاد داع راسك | 
					
						
						|  | ف | 
					
						
						|  | -- | 
					
						
						|  | reference: خلصو ليا غير لكريدي ديالي وديرو ليعجبكوم | 
					
						
						|  |  | 
					
						
						|  | predicted: خلصو ليا غير لكريدي ديالي أوديرو لي عجبكوم | 
					
						
						|  | -- | 
					
						
						|  | reference: أنا نتكلف يلاه لقى شي حاجه نشغل بيها راسي | 
					
						
						|  |  | 
					
						
						|  | predicted: أنا نتكلف يالله لقا شي حاجه نشغل بيها راسي | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | ## Evaluation | 
					
						
						|  |  | 
					
						
						|  | The model can be evaluated as follows on the Arabic test data of Common Voice. | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ```python | 
					
						
						|  | import re | 
					
						
						|  | import torch | 
					
						
						|  | import librosa | 
					
						
						|  | import torchaudio | 
					
						
						|  | from datasets import load_dataset, load_metric | 
					
						
						|  | from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor | 
					
						
						|  | import soundfile as sf | 
					
						
						|  |  | 
					
						
						|  | eval_dataset = load_dataset("ma_speech_corpus", split="test") | 
					
						
						|  | wer = load_metric("wer") | 
					
						
						|  |  | 
					
						
						|  | processor = Wav2Vec2Processor.from_pretrained("othrif/wav2vec2-large-xlsr-moroccan") | 
					
						
						|  | model = Wav2Vec2ForCTC.from_pretrained("othrif/wav2vec2-large-xlsr-moroccan") | 
					
						
						|  | model.to("cuda") | 
					
						
						|  |  | 
					
						
						|  | chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\\"\\\'\\�]' | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def remove_special_characters(batch): | 
					
						
						|  | batch["text"] = re.sub(chars_to_ignore_regex, "", batch["sentence"]).lower() + " " | 
					
						
						|  | return batch | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | eval_dataset = eval_dataset.map(remove_special_characters, remove_columns=["sentence"]) | 
					
						
						|  | #eval_dataset = eval_dataset.select(range(100)) | 
					
						
						|  |  | 
					
						
						|  | def speech_file_to_array_fn(batch): | 
					
						
						|  | start, stop = batch['segment'].split('_') | 
					
						
						|  | speech_array, sampling_rate = torchaudio.load(batch["path"]) | 
					
						
						|  | speech_array, sampling_rate = sf.read(batch["path"], start=int(float(start) * sampling_rate), | 
					
						
						|  | stop=int(float(stop) * sampling_rate)) | 
					
						
						|  | batch["speech"] = librosa.resample(speech_array, sampling_rate, 16_000) | 
					
						
						|  | batch["sampling_rate"] = 16_000 | 
					
						
						|  | batch["target_text"] = batch["text"] | 
					
						
						|  | return batch | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | eval_dataset = eval_dataset.map( | 
					
						
						|  | speech_file_to_array_fn, | 
					
						
						|  | remove_columns=eval_dataset.column_names | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def evaluate(batch): | 
					
						
						|  | inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) | 
					
						
						|  |  | 
					
						
						|  | with torch.no_grad(): | 
					
						
						|  | logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits | 
					
						
						|  |  | 
					
						
						|  | pred_ids = torch.argmax(logits, dim=-1) | 
					
						
						|  | batch["pred_strings"] = processor.batch_decode(pred_ids) | 
					
						
						|  | return batch | 
					
						
						|  |  | 
					
						
						|  | result = eval_dataset.map(evaluate, batched=True, batch_size=32) | 
					
						
						|  |  | 
					
						
						|  | print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["target_text"]))) | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | **Test Result**: 66.45 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ## Training | 
					
						
						|  |  | 
					
						
						|  | The  [MGB5](http://www.islrn.org/resources/938-639-614-524-5/) `train`, `validation` datasets were used for training. | 
					
						
						|  |  | 
					
						
						|  | The script used for training can be found [here](https://github.com/othrif/xlsr-wav2vec2) |