Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeCan It Edit? Evaluating the Ability of Large Language Models to Follow Code Editing Instructions
A significant amount of research is focused on developing and evaluating large language models for a variety of code synthesis tasks. These include synthesizing code from natural language instructions, synthesizing tests from code, and synthesizing explanations of code. In contrast, the behavior of instructional code editing with LLMs is understudied. These are tasks in which the model is instructed to update a block of code provided in a prompt. The editing instruction may ask for a feature to added or removed, describe a bug and ask for a fix, ask for a different kind of solution, or many other common code editing tasks. We introduce a carefully crafted benchmark of code editing tasks and use it evaluate several cutting edge LLMs. Our evaluation exposes a significant gap between the capabilities of state-of-the-art open and closed models. For example, even GPT-3.5-Turbo is 8.8% better than the best open model at editing code. We also introduce a new, carefully curated, permissively licensed training set of code edits coupled with natural language instructions. Using this training set, we show that we can fine-tune open Code LLMs to significantly improve their code editing capabilities.
SuperEdit: Rectifying and Facilitating Supervision for Instruction-Based Image Editing
Due to the challenges of manually collecting accurate editing data, existing datasets are typically constructed using various automated methods, leading to noisy supervision signals caused by the mismatch between editing instructions and original-edited image pairs. Recent efforts attempt to improve editing models through generating higher-quality edited images, pre-training on recognition tasks, or introducing vision-language models (VLMs) but fail to resolve this fundamental issue. In this paper, we offer a novel solution by constructing more effective editing instructions for given image pairs. This includes rectifying the editing instructions to better align with the original-edited image pairs and using contrastive editing instructions to further enhance their effectiveness. Specifically, we find that editing models exhibit specific generation attributes at different inference steps, independent of the text. Based on these prior attributes, we define a unified guide for VLMs to rectify editing instructions. However, there are some challenging editing scenarios that cannot be resolved solely with rectified instructions. To this end, we further construct contrastive supervision signals with positive and negative instructions and introduce them into the model training using triplet loss, thereby further facilitating supervision effectiveness. Our method does not require the VLM modules or pre-training tasks used in previous work, offering a more direct and efficient way to provide better supervision signals, and providing a novel, simple, and effective solution for instruction-based image editing. Results on multiple benchmarks demonstrate that our method significantly outperforms existing approaches. Compared with previous SOTA SmartEdit, we achieve 9.19% improvements on the Real-Edit benchmark with 30x less training data and 13x smaller model size.
PromptArtisan: Multi-instruction Image Editing in Single Pass with Complete Attention Control
We present PromptArtisan, a groundbreaking approach to multi-instruction image editing that achieves remarkable results in a single pass, eliminating the need for time-consuming iterative refinement. Our method empowers users to provide multiple editing instructions, each associated with a specific mask within the image. This flexibility allows for complex edits involving mask intersections or overlaps, enabling the realization of intricate and nuanced image transformations. PromptArtisan leverages a pre-trained InstructPix2Pix model in conjunction with a novel Complete Attention Control Mechanism (CACM). This mechanism ensures precise adherence to user instructions, granting fine-grained control over the editing process. Furthermore, our approach is zero-shot, requiring no additional training, and boasts improved processing complexity compared to traditional iterative methods. By seamlessly integrating multi-instruction capabilities, single-pass efficiency, and complete attention control, PromptArtisan unlocks new possibilities for creative and efficient image editing workflows, catering to both novice and expert users alike.
HumanEdit: A High-Quality Human-Rewarded Dataset for Instruction-based Image Editing
We present HumanEdit, a high-quality, human-rewarded dataset specifically designed for instruction-guided image editing, enabling precise and diverse image manipulations through open-form language instructions. Previous large-scale editing datasets often incorporate minimal human feedback, leading to challenges in aligning datasets with human preferences. HumanEdit bridges this gap by employing human annotators to construct data pairs and administrators to provide feedback. With meticulously curation, HumanEdit comprises 5,751 images and requires more than 2,500 hours of human effort across four stages, ensuring both accuracy and reliability for a wide range of image editing tasks. The dataset includes six distinct types of editing instructions: Action, Add, Counting, Relation, Remove, and Replace, encompassing a broad spectrum of real-world scenarios. All images in the dataset are accompanied by masks, and for a subset of the data, we ensure that the instructions are sufficiently detailed to support mask-free editing. Furthermore, HumanEdit offers comprehensive diversity and high-resolution 1024 times 1024 content sourced from various domains, setting a new versatile benchmark for instructional image editing datasets. With the aim of advancing future research and establishing evaluation benchmarks in the field of image editing, we release HumanEdit at https://huggingface.co/datasets/BryanW/HumanEdit.
ChartEdit: How Far Are MLLMs From Automating Chart Analysis? Evaluating MLLMs' Capability via Chart Editing
Although multimodal large language models (MLLMs) show promise in generating chart rendering code, chart editing presents a greater challenge. This difficulty stems from its nature as a labor-intensive task for humans that also demands MLLMs to integrate chart understanding, complex reasoning, and precise intent interpretation. While many MLLMs claim such editing capabilities, current assessments typically rely on limited case studies rather than robust evaluation methodologies, highlighting the urgent need for a comprehensive evaluation framework. In this work, we propose ChartEdit, a new high-quality benchmark designed for chart editing tasks. This benchmark comprises 1,405 diverse editing instructions applied to 233 real-world charts, with each instruction-chart instance having been manually annotated and validated for accuracy. Utilizing ChartEdit, we evaluate the performance of 10 mainstream MLLMs across two types of experiments, assessing them at both the code and chart levels. The results suggest that large-scale models can generate code to produce images that partially match the reference images. However, their ability to generate accurate edits according to the instructions remains limited. The state-of-the-art (SOTA) model achieves a score of only 59.96, highlighting significant challenges in precise modification. In contrast, small-scale models, including chart-domain models, struggle both with following editing instructions and generating overall chart images, underscoring the need for further development in this area. Code is available at https://github.com/xxlllz/ChartEdit.
RegionDrag: Fast Region-Based Image Editing with Diffusion Models
Point-drag-based image editing methods, like DragDiffusion, have attracted significant attention. However, point-drag-based approaches suffer from computational overhead and misinterpretation of user intentions due to the sparsity of point-based editing instructions. In this paper, we propose a region-based copy-and-paste dragging method, RegionDrag, to overcome these limitations. RegionDrag allows users to express their editing instructions in the form of handle and target regions, enabling more precise control and alleviating ambiguity. In addition, region-based operations complete editing in one iteration and are much faster than point-drag-based methods. We also incorporate the attention-swapping technique for enhanced stability during editing. To validate our approach, we extend existing point-drag-based datasets with region-based dragging instructions. Experimental results demonstrate that RegionDrag outperforms existing point-drag-based approaches in terms of speed, accuracy, and alignment with user intentions. Remarkably, RegionDrag completes the edit on an image with a resolution of 512x512 in less than 2 seconds, which is more than 100x faster than DragDiffusion, while achieving better performance. Project page: https://visual-ai.github.io/regiondrag.
InstructBrush: Learning Attention-based Instruction Optimization for Image Editing
In recent years, instruction-based image editing methods have garnered significant attention in image editing. However, despite encompassing a wide range of editing priors, these methods are helpless when handling editing tasks that are challenging to accurately describe through language. We propose InstructBrush, an inversion method for instruction-based image editing methods to bridge this gap. It extracts editing effects from exemplar image pairs as editing instructions, which are further applied for image editing. Two key techniques are introduced into InstructBrush, Attention-based Instruction Optimization and Transformation-oriented Instruction Initialization, to address the limitations of the previous method in terms of inversion effects and instruction generalization. To explore the ability of instruction inversion methods to guide image editing in open scenarios, we establish a TransformationOriented Paired Benchmark (TOP-Bench), which contains a rich set of scenes and editing types. The creation of this benchmark paves the way for further exploration of instruction inversion. Quantitatively and qualitatively, our approach achieves superior performance in editing and is more semantically consistent with the target editing effects.
Image Editing As Programs with Diffusion Models
While diffusion models have achieved remarkable success in text-to-image generation, they encounter significant challenges with instruction-driven image editing. Our research highlights a key challenge: these models particularly struggle with structurally inconsistent edits that involve substantial layout changes. To mitigate this gap, we introduce Image Editing As Programs (IEAP), a unified image editing framework built upon the Diffusion Transformer (DiT) architecture. At its core, IEAP approaches instructional editing through a reductionist lens, decomposing complex editing instructions into sequences of atomic operations. Each operation is implemented via a lightweight adapter sharing the same DiT backbone and is specialized for a specific type of edit. Programmed by a vision-language model (VLM)-based agent, these operations collaboratively support arbitrary and structurally inconsistent transformations. By modularizing and sequencing edits in this way, IEAP generalizes robustly across a wide range of editing tasks, from simple adjustments to substantial structural changes. Extensive experiments demonstrate that IEAP significantly outperforms state-of-the-art methods on standard benchmarks across various editing scenarios. In these evaluations, our framework delivers superior accuracy and semantic fidelity, particularly for complex, multi-step instructions. Codes are available at https://github.com/YujiaHu1109/IEAP.
UltraEdit: Instruction-based Fine-Grained Image Editing at Scale
This paper presents UltraEdit, a large-scale (approximately 4 million editing samples), automatically generated dataset for instruction-based image editing. Our key idea is to address the drawbacks in existing image editing datasets like InstructPix2Pix and MagicBrush, and provide a systematic approach to producing massive and high-quality image editing samples. UltraEdit offers several distinct advantages: 1) It features a broader range of editing instructions by leveraging the creativity of large language models (LLMs) alongside in-context editing examples from human raters; 2) Its data sources are based on real images, including photographs and artworks, which provide greater diversity and reduced bias compared to datasets solely generated by text-to-image models; 3) It also supports region-based editing, enhanced by high-quality, automatically produced region annotations. Our experiments show that canonical diffusion-based editing baselines trained on UltraEdit set new records on MagicBrush and Emu-Edit benchmarks. Our analysis further confirms the crucial role of real image anchors and region-based editing data. The dataset, code, and models can be found in https://ultra-editing.github.io.
ChatGPT-steered Editing Instructor for Customization of Abstractive Summarization
Tailoring outputs of large language models, such as ChatGPT, to specific user needs remains a challenge despite their impressive generation quality. In this paper, we propose a tri-agent generation pipeline consisting of a generator, an instructor, and an editor to enhance the customization of generated outputs. The generator produces an initial output, the user-specific instructor generates editing instructions, and the editor generates a revised output aligned with user preferences. The inference-only large language model (ChatGPT) serves as both the generator and the editor, while a smaller model acts as the user-specific instructor to guide the generation process toward user needs. The instructor is trained using editor-steered reinforcement learning, leveraging feedback from the large-scale editor model to optimize instruction generation. Experimental results on two abstractive summarization datasets demonstrate the effectiveness of our approach in generating outputs that better fulfill user expectations.
InstructGIE: Towards Generalizable Image Editing
Recent advances in image editing have been driven by the development of denoising diffusion models, marking a significant leap forward in this field. Despite these advances, the generalization capabilities of recent image editing approaches remain constrained. In response to this challenge, our study introduces a novel image editing framework with enhanced generalization robustness by boosting in-context learning capability and unifying language instruction. This framework incorporates a module specifically optimized for image editing tasks, leveraging the VMamba Block and an editing-shift matching strategy to augment in-context learning. Furthermore, we unveil a selective area-matching technique specifically engineered to address and rectify corrupted details in generated images, such as human facial features, to further improve the quality. Another key innovation of our approach is the integration of a language unification technique, which aligns language embeddings with editing semantics to elevate the quality of image editing. Moreover, we compile the first dataset for image editing with visual prompts and editing instructions that could be used to enhance in-context capability. Trained on this dataset, our methodology not only achieves superior synthesis quality for trained tasks, but also demonstrates robust generalization capability across unseen vision tasks through tailored prompts.
PairEdit: Learning Semantic Variations for Exemplar-based Image Editing
Recent advancements in text-guided image editing have achieved notable success by leveraging natural language prompts for fine-grained semantic control. However, certain editing semantics are challenging to specify precisely using textual descriptions alone. A practical alternative involves learning editing semantics from paired source-target examples. Existing exemplar-based editing methods still rely on text prompts describing the change within paired examples or learning implicit text-based editing instructions. In this paper, we introduce PairEdit, a novel visual editing method designed to effectively learn complex editing semantics from a limited number of image pairs or even a single image pair, without using any textual guidance. We propose a target noise prediction that explicitly models semantic variations within paired images through a guidance direction term. Moreover, we introduce a content-preserving noise schedule to facilitate more effective semantic learning. We also propose optimizing distinct LoRAs to disentangle the learning of semantic variations from content. Extensive qualitative and quantitative evaluations demonstrate that PairEdit successfully learns intricate semantics while significantly improving content consistency compared to baseline methods. Code will be available at https://github.com/xudonmao/PairEdit.
InstructPix2NeRF: Instructed 3D Portrait Editing from a Single Image
With the success of Neural Radiance Field (NeRF) in 3D-aware portrait editing, a variety of works have achieved promising results regarding both quality and 3D consistency. However, these methods heavily rely on per-prompt optimization when handling natural language as editing instructions. Due to the lack of labeled human face 3D datasets and effective architectures, the area of human-instructed 3D-aware editing for open-world portraits in an end-to-end manner remains under-explored. To solve this problem, we propose an end-to-end diffusion-based framework termed InstructPix2NeRF, which enables instructed 3D-aware portrait editing from a single open-world image with human instructions. At its core lies a conditional latent 3D diffusion process that lifts 2D editing to 3D space by learning the correlation between the paired images' difference and the instructions via triplet data. With the help of our proposed token position randomization strategy, we could even achieve multi-semantic editing through one single pass with the portrait identity well-preserved. Besides, we further propose an identity consistency module that directly modulates the extracted identity signals into our diffusion process, which increases the multi-view 3D identity consistency. Extensive experiments verify the effectiveness of our method and show its superiority against strong baselines quantitatively and qualitatively. Source code and pre-trained models can be found on our project page: https://mybabyyh.github.io/InstructPix2NeRF.
Seal-3D: Interactive Pixel-Level Editing for Neural Radiance Fields
With the popularity of implicit neural representations, or neural radiance fields (NeRF), there is a pressing need for editing methods to interact with the implicit 3D models for tasks like post-processing reconstructed scenes and 3D content creation. While previous works have explored NeRF editing from various perspectives, they are restricted in editing flexibility, quality, and speed, failing to offer direct editing response and instant preview. The key challenge is to conceive a locally editable neural representation that can directly reflect the editing instructions and update instantly. To bridge the gap, we propose a new interactive editing method and system for implicit representations, called Seal-3D, which allows users to edit NeRF models in a pixel-level and free manner with a wide range of NeRF-like backbone and preview the editing effects instantly. To achieve the effects, the challenges are addressed by our proposed proxy function mapping the editing instructions to the original space of NeRF models and a teacher-student training strategy with local pretraining and global finetuning. A NeRF editing system is built to showcase various editing types. Our system can achieve compelling editing effects with an interactive speed of about 1 second.
FreeEdit: Mask-free Reference-based Image Editing with Multi-modal Instruction
Introducing user-specified visual concepts in image editing is highly practical as these concepts convey the user's intent more precisely than text-based descriptions. We propose FreeEdit, a novel approach for achieving such reference-based image editing, which can accurately reproduce the visual concept from the reference image based on user-friendly language instructions. Our approach leverages the multi-modal instruction encoder to encode language instructions to guide the editing process. This implicit way of locating the editing area eliminates the need for manual editing masks. To enhance the reconstruction of reference details, we introduce the Decoupled Residual ReferAttention (DRRA) module. This module is designed to integrate fine-grained reference features extracted by a detail extractor into the image editing process in a residual way without interfering with the original self-attention. Given that existing datasets are unsuitable for reference-based image editing tasks, particularly due to the difficulty in constructing image triplets that include a reference image, we curate a high-quality dataset, FreeBench, using a newly developed twice-repainting scheme. FreeBench comprises the images before and after editing, detailed editing instructions, as well as a reference image that maintains the identity of the edited object, encompassing tasks such as object addition, replacement, and deletion. By conducting phased training on FreeBench followed by quality tuning, FreeEdit achieves high-quality zero-shot editing through convenient language instructions. We conduct extensive experiments to evaluate the effectiveness of FreeEdit across multiple task types, demonstrating its superiority over existing methods. The code will be available at: https://freeedit.github.io/.
Visual Instruction Inversion: Image Editing via Visual Prompting
Text-conditioned image editing has emerged as a powerful tool for editing images. However, in many situations, language can be ambiguous and ineffective in describing specific image edits. When faced with such challenges, visual prompts can be a more informative and intuitive way to convey ideas. We present a method for image editing via visual prompting. Given pairs of example that represent the "before" and "after" images of an edit, our goal is to learn a text-based editing direction that can be used to perform the same edit on new images. We leverage the rich, pretrained editing capabilities of text-to-image diffusion models by inverting visual prompts into editing instructions. Our results show that with just one example pair, we can achieve competitive results compared to state-of-the-art text-conditioned image editing frameworks.
Instruct-MusicGen: Unlocking Text-to-Music Editing for Music Language Models via Instruction Tuning
Recent advances in text-to-music editing, which employ text queries to modify music (e.g.\ by changing its style or adjusting instrumental components), present unique challenges and opportunities for AI-assisted music creation. Previous approaches in this domain have been constrained by the necessity to train specific editing models from scratch, which is both resource-intensive and inefficient; other research uses large language models to predict edited music, resulting in imprecise audio reconstruction. To Combine the strengths and address these limitations, we introduce Instruct-MusicGen, a novel approach that finetunes a pretrained MusicGen model to efficiently follow editing instructions such as adding, removing, or separating stems. Our approach involves a modification of the original MusicGen architecture by incorporating a text fusion module and an audio fusion module, which allow the model to process instruction texts and audio inputs concurrently and yield the desired edited music. Remarkably, Instruct-MusicGen only introduces 8% new parameters to the original MusicGen model and only trains for 5K steps, yet it achieves superior performance across all tasks compared to existing baselines, and demonstrates performance comparable to the models trained for specific tasks. This advancement not only enhances the efficiency of text-to-music editing but also broadens the applicability of music language models in dynamic music production environments.
GIE-Bench: Towards Grounded Evaluation for Text-Guided Image Editing
Editing images using natural language instructions has become a natural and expressive way to modify visual content; yet, evaluating the performance of such models remains challenging. Existing evaluation approaches often rely on image-text similarity metrics like CLIP, which lack precision. In this work, we introduce a new benchmark designed to evaluate text-guided image editing models in a more grounded manner, along two critical dimensions: (i) functional correctness, assessed via automatically generated multiple-choice questions that verify whether the intended change was successfully applied; and (ii) image content preservation, which ensures that non-targeted regions of the image remain visually consistent using an object-aware masking technique and preservation scoring. The benchmark includes over 1000 high-quality editing examples across 20 diverse content categories, each annotated with detailed editing instructions, evaluation questions, and spatial object masks. We conduct a large-scale study comparing GPT-Image-1, the latest flagship in the text-guided image editing space, against several state-of-the-art editing models, and validate our automatic metrics against human ratings. Results show that GPT-Image-1 leads in instruction-following accuracy, but often over-modifies irrelevant image regions, highlighting a key trade-off in the current model behavior. GIE-Bench provides a scalable, reproducible framework for advancing more accurate evaluation of text-guided image editing.
FlowDirector: Training-Free Flow Steering for Precise Text-to-Video Editing
Text-driven video editing aims to modify video content according to natural language instructions. While recent training-free approaches have made progress by leveraging pre-trained diffusion models, they typically rely on inversion-based techniques that map input videos into the latent space, which often leads to temporal inconsistencies and degraded structural fidelity. To address this, we propose FlowDirector, a novel inversion-free video editing framework. Our framework models the editing process as a direct evolution in data space, guiding the video via an Ordinary Differential Equation (ODE) to smoothly transition along its inherent spatiotemporal manifold, thereby preserving temporal coherence and structural details. To achieve localized and controllable edits, we introduce an attention-guided masking mechanism that modulates the ODE velocity field, preserving non-target regions both spatially and temporally. Furthermore, to address incomplete edits and enhance semantic alignment with editing instructions, we present a guidance-enhanced editing strategy inspired by Classifier-Free Guidance, which leverages differential signals between multiple candidate flows to steer the editing trajectory toward stronger semantic alignment without compromising structural consistency. Extensive experiments across benchmarks demonstrate that FlowDirector achieves state-of-the-art performance in instruction adherence, temporal consistency, and background preservation, establishing a new paradigm for efficient and coherent video editing without inversion.
ComplexBench-Edit: Benchmarking Complex Instruction-Driven Image Editing via Compositional Dependencies
Text-driven image editing has achieved remarkable success in following single instructions. However, real-world scenarios often involve complex, multi-step instructions, particularly ``chain'' instructions where operations are interdependent. Current models struggle with these intricate directives, and existing benchmarks inadequately evaluate such capabilities. Specifically, they often overlook multi-instruction and chain-instruction complexities, and common consistency metrics are flawed. To address this, we introduce ComplexBench-Edit, a novel benchmark designed to systematically assess model performance on complex, multi-instruction, and chain-dependent image editing tasks. ComplexBench-Edit also features a new vision consistency evaluation method that accurately assesses non-modified regions by excluding edited areas. Furthermore, we propose a simple yet powerful Chain-of-Thought (CoT)-based approach that significantly enhances the ability of existing models to follow complex instructions. Our extensive experiments demonstrate ComplexBench-Edit's efficacy in differentiating model capabilities and highlight the superior performance of our CoT-based method in handling complex edits. The data and code are released at https://github.com/llllly26/ComplexBench-Edit.
FireEdit: Fine-grained Instruction-based Image Editing via Region-aware Vision Language Model
Currently, instruction-based image editing methods have made significant progress by leveraging the powerful cross-modal understanding capabilities of vision language models (VLMs). However, they still face challenges in three key areas: 1) complex scenarios; 2) semantic consistency; and 3) fine-grained editing. To address these issues, we propose FireEdit, an innovative Fine-grained Instruction-based image editing framework that exploits a REgion-aware VLM. FireEdit is designed to accurately comprehend user instructions and ensure effective control over the editing process. Specifically, we enhance the fine-grained visual perception capabilities of the VLM by introducing additional region tokens. Relying solely on the output of the LLM to guide the diffusion model may lead to suboptimal editing results. Therefore, we propose a Time-Aware Target Injection module and a Hybrid Visual Cross Attention module. The former dynamically adjusts the guidance strength at various denoising stages by integrating timestep embeddings with the text embeddings. The latter enhances visual details for image editing, thereby preserving semantic consistency between the edited result and the source image. By combining the VLM enhanced with fine-grained region tokens and the time-dependent diffusion model, FireEdit demonstrates significant advantages in comprehending editing instructions and maintaining high semantic consistency. Extensive experiments indicate that our approach surpasses the state-of-the-art instruction-based image editing methods. Our project is available at https://zjgans.github.io/fireedit.github.io.
ConsistDreamer: 3D-Consistent 2D Diffusion for High-Fidelity Scene Editing
This paper proposes ConsistDreamer - a novel framework that lifts 2D diffusion models with 3D awareness and 3D consistency, thus enabling high-fidelity instruction-guided scene editing. To overcome the fundamental limitation of missing 3D consistency in 2D diffusion models, our key insight is to introduce three synergetic strategies that augment the input of the 2D diffusion model to become 3D-aware and to explicitly enforce 3D consistency during the training process. Specifically, we design surrounding views as context-rich input for the 2D diffusion model, and generate 3D-consistent, structured noise instead of image-independent noise. Moreover, we introduce self-supervised consistency-enforcing training within the per-scene editing procedure. Extensive evaluation shows that our ConsistDreamer achieves state-of-the-art performance for instruction-guided scene editing across various scenes and editing instructions, particularly in complicated large-scale indoor scenes from ScanNet++, with significantly improved sharpness and fine-grained textures. Notably, ConsistDreamer stands as the first work capable of successfully editing complex (e.g., plaid/checkered) patterns. Our project page is at immortalco.github.io/ConsistDreamer.
$\texttt{Complex-Edit}$: CoT-Like Instruction Generation for Complexity-Controllable Image Editing Benchmark
We introduce Complex-Edit, a comprehensive benchmark designed to systematically evaluate instruction-based image editing models across instructions of varying complexity. To develop this benchmark, we harness GPT-4o to automatically collect a diverse set of editing instructions at scale. Our approach follows a well-structured ``Chain-of-Edit'' pipeline: we first generate individual atomic editing tasks independently and then integrate them to form cohesive, complex instructions. Additionally, we introduce a suite of metrics to assess various aspects of editing performance, along with a VLM-based auto-evaluation pipeline that supports large-scale assessments. Our benchmark yields several notable insights: 1) Open-source models significantly underperform relative to proprietary, closed-source models, with the performance gap widening as instruction complexity increases; 2) Increased instructional complexity primarily impairs the models' ability to retain key elements from the input images and to preserve the overall aesthetic quality; 3) Decomposing a complex instruction into a sequence of atomic steps, executed in a step-by-step manner, substantially degrades performance across multiple metrics; 4) A straightforward Best-of-N selection strategy improves results for both direct editing and the step-by-step sequential approach; and 5) We observe a ``curse of synthetic data'': when synthetic data is involved in model training, the edited images from such models tend to appear increasingly synthetic as the complexity of the editing instructions rises -- a phenomenon that intriguingly also manifests in the latest GPT-4o outputs.
Beyond Simple Edits: X-Planner for Complex Instruction-Based Image Editing
Recent diffusion-based image editing methods have significantly advanced text-guided tasks but often struggle to interpret complex, indirect instructions. Moreover, current models frequently suffer from poor identity preservation, unintended edits, or rely heavily on manual masks. To address these challenges, we introduce X-Planner, a Multimodal Large Language Model (MLLM)-based planning system that effectively bridges user intent with editing model capabilities. X-Planner employs chain-of-thought reasoning to systematically decompose complex instructions into simpler, clear sub-instructions. For each sub-instruction, X-Planner automatically generates precise edit types and segmentation masks, eliminating manual intervention and ensuring localized, identity-preserving edits. Additionally, we propose a novel automated pipeline for generating large-scale data to train X-Planner which achieves state-of-the-art results on both existing benchmarks and our newly introduced complex editing benchmark.
Señorita-2M: A High-Quality Instruction-based Dataset for General Video Editing by Video Specialists
Recent advancements in video generation have spurred the development of video editing techniques, which can be divided into inversion-based and end-to-end methods. However, current video editing methods still suffer from several challenges. Inversion-based methods, though training-free and flexible, are time-consuming during inference, struggle with fine-grained editing instructions, and produce artifacts and jitter. On the other hand, end-to-end methods, which rely on edited video pairs for training, offer faster inference speeds but often produce poor editing results due to a lack of high-quality training video pairs. In this paper, to close the gap in end-to-end methods, we introduce Se\~norita-2M, a high-quality video editing dataset. Se\~norita-2M consists of approximately 2 millions of video editing pairs. It is built by crafting four high-quality, specialized video editing models, each crafted and trained by our team to achieve state-of-the-art editing results. We also propose a filtering pipeline to eliminate poorly edited video pairs. Furthermore, we explore common video editing architectures to identify the most effective structure based on current pre-trained generative model. Extensive experiments show that our dataset can help to yield remarkably high-quality video editing results. More details are available at https://senorita.github.io.
CoMo: Controllable Motion Generation through Language Guided Pose Code Editing
Text-to-motion models excel at efficient human motion generation, but existing approaches lack fine-grained controllability over the generation process. Consequently, modifying subtle postures within a motion or inserting new actions at specific moments remains a challenge, limiting the applicability of these methods in diverse scenarios. In light of these challenges, we introduce CoMo, a Controllable Motion generation model, adept at accurately generating and editing motions by leveraging the knowledge priors of large language models (LLMs). Specifically, CoMo decomposes motions into discrete and semantically meaningful pose codes, with each code encapsulating the semantics of a body part, representing elementary information such as "left knee slightly bent". Given textual inputs, CoMo autoregressively generates sequences of pose codes, which are then decoded into 3D motions. Leveraging pose codes as interpretable representations, an LLM can directly intervene in motion editing by adjusting the pose codes according to editing instructions. Experiments demonstrate that CoMo achieves competitive performance in motion generation compared to state-of-the-art models while, in human studies, CoMo substantially surpasses previous work in motion editing abilities.
Visual ChatGPT: Talking, Drawing and Editing with Visual Foundation Models
ChatGPT is attracting a cross-field interest as it provides a language interface with remarkable conversational competency and reasoning capabilities across many domains. However, since ChatGPT is trained with languages, it is currently not capable of processing or generating images from the visual world. At the same time, Visual Foundation Models, such as Visual Transformers or Stable Diffusion, although showing great visual understanding and generation capabilities, they are only experts on specific tasks with one-round fixed inputs and outputs. To this end, We build a system called Visual ChatGPT, incorporating different Visual Foundation Models, to enable the user to interact with ChatGPT by 1) sending and receiving not only languages but also images 2) providing complex visual questions or visual editing instructions that require the collaboration of multiple AI models with multi-steps. 3) providing feedback and asking for corrected results. We design a series of prompts to inject the visual model information into ChatGPT, considering models of multiple inputs/outputs and models that require visual feedback. Experiments show that Visual ChatGPT opens the door to investigating the visual roles of ChatGPT with the help of Visual Foundation Models. Our system is publicly available at https://github.com/microsoft/visual-chatgpt.
CAD-Editor: A Locate-then-Infill Framework with Automated Training Data Synthesis for Text-Based CAD Editing
Computer Aided Design (CAD) is indispensable across various industries. Text-based CAD editing, which automates the modification of CAD models based on textual instructions, holds great potential but remains underexplored. Existing methods primarily focus on design variation generation or text-based CAD generation, either lacking support for text-based control or neglecting existing CAD models as constraints. We introduce CAD-Editor, the first framework for text-based CAD editing. To address the challenge of demanding triplet data with accurate correspondence for training, we propose an automated data synthesis pipeline. This pipeline utilizes design variation models to generate pairs of original and edited CAD models and employs Large Vision-Language Models (LVLMs) to summarize their differences into editing instructions. To tackle the composite nature of text-based CAD editing, we propose a locate-then-infill framework that decomposes the task into two focused sub-tasks: locating regions requiring modification and infilling these regions with appropriate edits. Large Language Models (LLMs) serve as the backbone for both sub-tasks, leveraging their capabilities in natural language understanding and CAD knowledge. Experiments show that CAD-Editor achieves superior performance both quantitatively and qualitatively.
SPICE: A Synergistic, Precise, Iterative, and Customizable Image Editing Workflow
Recent prompt-based image editing models have demonstrated impressive prompt-following capability at structural editing tasks. However, existing models still fail to perform local edits, follow detailed editing prompts, or maintain global image quality beyond a single editing step. To address these challenges, we introduce SPICE, a training-free workflow that accepts arbitrary resolutions and aspect ratios, accurately follows user requirements, and improves image quality consistently during more than 100 editing steps. By synergizing the strengths of a base diffusion model and a Canny edge ControlNet model, SPICE robustly handles free-form editing instructions from the user. SPICE outperforms state-of-the-art baselines on a challenging realistic image-editing dataset consisting of semantic editing (object addition, removal, replacement, and background change), stylistic editing (texture changes), and structural editing (action change) tasks. Not only does SPICE achieve the highest quantitative performance according to standard evaluation metrics, but it is also consistently preferred by users over existing image-editing methods. We release the workflow implementation for popular diffusion model Web UIs to support further research and artistic exploration.
Expressing Visual Relationships via Language
Describing images with text is a fundamental problem in vision-language research. Current studies in this domain mostly focus on single image captioning. However, in various real applications (e.g., image editing, difference interpretation, and retrieval), generating relational captions for two images, can also be very useful. This important problem has not been explored mostly due to lack of datasets and effective models. To push forward the research in this direction, we first introduce a new language-guided image editing dataset that contains a large number of real image pairs with corresponding editing instructions. We then propose a new relational speaker model based on an encoder-decoder architecture with static relational attention and sequential multi-head attention. We also extend the model with dynamic relational attention, which calculates visual alignment while decoding. Our models are evaluated on our newly collected and two public datasets consisting of image pairs annotated with relationship sentences. Experimental results, based on both automatic and human evaluation, demonstrate that our model outperforms all baselines and existing methods on all the datasets.
Instruction-based Image Manipulation by Watching How Things Move
This paper introduces a novel dataset construction pipeline that samples pairs of frames from videos and uses multimodal large language models (MLLMs) to generate editing instructions for training instruction-based image manipulation models. Video frames inherently preserve the identity of subjects and scenes, ensuring consistent content preservation during editing. Additionally, video data captures diverse, natural dynamics-such as non-rigid subject motion and complex camera movements-that are difficult to model otherwise, making it an ideal source for scalable dataset construction. Using this approach, we create a new dataset to train InstructMove, a model capable of instruction-based complex manipulations that are difficult to achieve with synthetically generated datasets. Our model demonstrates state-of-the-art performance in tasks such as adjusting subject poses, rearranging elements, and altering camera perspectives.
Are Any-to-Any Models More Consistent Across Modality Transfers Than Specialists?
Any-to-any generative models aim to enable seamless interpretation and generation across multiple modalities within a unified framework, yet their ability to preserve relationships across modalities remains uncertain. Do unified models truly achieve cross-modal coherence, or is this coherence merely perceived? To explore this, we introduce ACON, a dataset of 1,000 images (500 newly contributed) paired with captions, editing instructions, and Q&A pairs to evaluate cross-modal transfers rigorously. Using three consistency criteria-cyclic consistency, forward equivariance, and conjugated equivariance-our experiments reveal that any-to-any models do not consistently demonstrate greater cross-modal consistency than specialized models in pointwise evaluations such as cyclic consistency. However, equivariance evaluations uncover weak but observable consistency through structured analyses of the intermediate latent space enabled by multiple editing operations. We release our code and data at https://github.com/JiwanChung/ACON.
Fine-Tuning Diffusion Generative Models via Rich Preference Optimization
We introduce Rich Preference Optimization (RPO), a novel pipeline that leverages rich feedback signals to improve the curation of preference pairs for fine-tuning text-to-image diffusion models. Traditional methods, like Diffusion-DPO, often rely solely on reward model labeling, which can be opaque, offer limited insights into the rationale behind preferences, and are prone to issues such as reward hacking or overfitting. In contrast, our approach begins with generating detailed critiques of synthesized images to extract reliable and actionable image editing instructions. By implementing these instructions, we create refined images, resulting in synthetic, informative preference pairs that serve as enhanced tuning datasets. We demonstrate the effectiveness of our pipeline and the resulting datasets in fine-tuning state-of-the-art diffusion models.
AUDIT: Audio Editing by Following Instructions with Latent Diffusion Models
Audio editing is applicable for various purposes, such as adding background sound effects, replacing a musical instrument, and repairing damaged audio. Recently, some diffusion-based methods achieved zero-shot audio editing by using a diffusion and denoising process conditioned on the text description of the output audio. However, these methods still have some problems: 1) they have not been trained on editing tasks and cannot ensure good editing effects; 2) they can erroneously modify audio segments that do not require editing; 3) they need a complete description of the output audio, which is not always available or necessary in practical scenarios. In this work, we propose AUDIT, an instruction-guided audio editing model based on latent diffusion models. Specifically, AUDIT has three main design features: 1) we construct triplet training data (instruction, input audio, output audio) for different audio editing tasks and train a diffusion model using instruction and input (to be edited) audio as conditions and generating output (edited) audio; 2) it can automatically learn to only modify segments that need to be edited by comparing the difference between the input and output audio; 3) it only needs edit instructions instead of full target audio descriptions as text input. AUDIT achieves state-of-the-art results in both objective and subjective metrics for several audio editing tasks (e.g., adding, dropping, replacement, inpainting, super-resolution). Demo samples are available at https://audit-demo.github.io/.
InstructHumans: Editing Animated 3D Human Textures with Instructions
We present InstructHumans, a novel framework for instruction-driven 3D human texture editing. Existing text-based editing methods use Score Distillation Sampling (SDS) to distill guidance from generative models. This work shows that naively using such scores is harmful to editing as they destroy consistency with the source avatar. Instead, we propose an alternate SDS for Editing (SDS-E) that selectively incorporates subterms of SDS across diffusion timesteps. We further enhance SDS-E with spatial smoothness regularization and gradient-based viewpoint sampling to achieve high-quality edits with sharp and high-fidelity detailing. InstructHumans significantly outperforms existing 3D editing methods, consistent with the initial avatar while faithful to the textual instructions. Project page: https://jyzhu.top/instruct-humans .
GaussianEditor: Editing 3D Gaussians Delicately with Text Instructions
Recently, impressive results have been achieved in 3D scene editing with text instructions based on a 2D diffusion model. However, current diffusion models primarily generate images by predicting noise in the latent space, and the editing is usually applied to the whole image, which makes it challenging to perform delicate, especially localized, editing for 3D scenes. Inspired by recent 3D Gaussian splatting, we propose a systematic framework, named GaussianEditor, to edit 3D scenes delicately via 3D Gaussians with text instructions. Benefiting from the explicit property of 3D Gaussians, we design a series of techniques to achieve delicate editing. Specifically, we first extract the region of interest (RoI) corresponding to the text instruction, aligning it to 3D Gaussians. The Gaussian RoI is further used to control the editing process. Our framework can achieve more delicate and precise editing of 3D scenes than previous methods while enjoying much faster training speed, i.e. within 20 minutes on a single V100 GPU, more than twice as fast as Instruct-NeRF2NeRF (45 minutes -- 2 hours).
Watch Your Steps: Local Image and Scene Editing by Text Instructions
Denoising diffusion models have enabled high-quality image generation and editing. We present a method to localize the desired edit region implicit in a text instruction. We leverage InstructPix2Pix (IP2P) and identify the discrepancy between IP2P predictions with and without the instruction. This discrepancy is referred to as the relevance map. The relevance map conveys the importance of changing each pixel to achieve the edits, and is used to to guide the modifications. This guidance ensures that the irrelevant pixels remain unchanged. Relevance maps are further used to enhance the quality of text-guided editing of 3D scenes in the form of neural radiance fields. A field is trained on relevance maps of training views, denoted as the relevance field, defining the 3D region within which modifications should be made. We perform iterative updates on the training views guided by rendered relevance maps from the relevance field. Our method achieves state-of-the-art performance on both image and NeRF editing tasks. Project page: https://ashmrz.github.io/WatchYourSteps/
ByteMorph: Benchmarking Instruction-Guided Image Editing with Non-Rigid Motions
Editing images with instructions to reflect non-rigid motions, camera viewpoint shifts, object deformations, human articulations, and complex interactions, poses a challenging yet underexplored problem in computer vision. Existing approaches and datasets predominantly focus on static scenes or rigid transformations, limiting their capacity to handle expressive edits involving dynamic motion. To address this gap, we introduce ByteMorph, a comprehensive framework for instruction-based image editing with an emphasis on non-rigid motions. ByteMorph comprises a large-scale dataset, ByteMorph-6M, and a strong baseline model built upon the Diffusion Transformer (DiT), named ByteMorpher. ByteMorph-6M includes over 6 million high-resolution image editing pairs for training, along with a carefully curated evaluation benchmark ByteMorph-Bench. Both capture a wide variety of non-rigid motion types across diverse environments, human figures, and object categories. The dataset is constructed using motion-guided data generation, layered compositing techniques, and automated captioning to ensure diversity, realism, and semantic coherence. We further conduct a comprehensive evaluation of recent instruction-based image editing methods from both academic and commercial domains.
WikiTableEdit: A Benchmark for Table Editing by Natural Language Instruction
Tabular data, as a crucial form of data representation, exists in diverse formats on the Web. When confronted with complex and irregular tables, manual modification becomes a laborious task. This paper investigates the performance of Large Language Models (LLMs) in the context of table editing tasks. Existing research mainly focuses on regular-shaped tables, wherein instructions are used to generate code in SQL, Python, or Excel Office-script for manipulating the tables. Nevertheless, editing tables with irregular structures, particularly those containing merged cells spanning multiple rows, poses a challenge when using code. To address this, we introduce the WikiTableEdit dataset. Leveraging 26,531 tables from the WikiSQL dataset, we automatically generate natural language instructions for six distinct basic operations and the corresponding outcomes, resulting in over 200,000 instances. Subsequently, we evaluate several representative large language models on the WikiTableEdit dataset to demonstrate the challenge of this task. The dataset will be released to the community to promote related researches.
LoRA of Change: Learning to Generate LoRA for the Editing Instruction from A Single Before-After Image Pair
In this paper, we propose the LoRA of Change (LoC) framework for image editing with visual instructions, i.e., before-after image pairs. Compared to the ambiguities, insufficient specificity, and diverse interpretations of natural language, visual instructions can accurately reflect users' intent. Building on the success of LoRA in text-based image editing and generation, we dynamically learn an instruction-specific LoRA to encode the "change" in a before-after image pair, enhancing the interpretability and reusability of our model. Furthermore, generalizable models for image editing with visual instructions typically require quad data, i.e., a before-after image pair, along with query and target images. Due to the scarcity of such quad data, existing models are limited to a narrow range of visual instructions. To overcome this limitation, we introduce the LoRA Reverse optimization technique, enabling large-scale training with paired data alone. Extensive qualitative and quantitative experiments demonstrate that our model produces high-quality images that align with user intent and support a broad spectrum of real-world visual instructions.
Focus on Your Instruction: Fine-grained and Multi-instruction Image Editing by Attention Modulation
Recently, diffusion-based methods, like InstructPix2Pix (IP2P), have achieved effective instruction-based image editing, requiring only natural language instructions from the user. However, these methods often inadvertently alter unintended areas and struggle with multi-instruction editing, resulting in compromised outcomes. To address these issues, we introduce the Focus on Your Instruction (FoI), a method designed to ensure precise and harmonious editing across multiple instructions without extra training or test-time optimization. In the FoI, we primarily emphasize two aspects: (1) precisely extracting regions of interest for each instruction and (2) guiding the denoising process to concentrate within these regions of interest. For the first objective, we identify the implicit grounding capability of IP2P from the cross-attention between instruction and image, then develop an effective mask extraction method. For the second objective, we introduce a cross attention modulation module for rough isolation of target editing regions and unrelated regions. Additionally, we introduce a mask-guided disentangle sampling strategy to further ensure clear region isolation. Experimental results demonstrate that FoI surpasses existing methods in both quantitative and qualitative evaluations, especially excelling in multi-instruction editing task.
Enhancing Conversational Search: Large Language Model-Aided Informative Query Rewriting
Query rewriting plays a vital role in enhancing conversational search by transforming context-dependent user queries into standalone forms. Existing approaches primarily leverage human-rewritten queries as labels to train query rewriting models. However, human rewrites may lack sufficient information for optimal retrieval performance. To overcome this limitation, we propose utilizing large language models (LLMs) as query rewriters, enabling the generation of informative query rewrites through well-designed instructions. We define four essential properties for well-formed rewrites and incorporate all of them into the instruction. In addition, we introduce the role of rewrite editors for LLMs when initial query rewrites are available, forming a "rewrite-then-edit" process. Furthermore, we propose distilling the rewriting capabilities of LLMs into smaller models to reduce rewriting latency. Our experimental evaluation on the QReCC dataset demonstrates that informative query rewrites can yield substantially improved retrieval performance compared to human rewrites, especially with sparse retrievers.
Differential Diffusion: Giving Each Pixel Its Strength
Text-based image editing has advanced significantly in recent years. With the rise of diffusion models, image editing via textual instructions has become ubiquitous. Unfortunately, current models lack the ability to customize the quantity of the change per pixel or per image fragment, resorting to changing the entire image in an equal amount, or editing a specific region using a binary mask. In this paper, we suggest a new framework which enables the user to customize the quantity of change for each image fragment, thereby enhancing the flexibility and verbosity of modern diffusion models. Our framework does not require model training or fine-tuning, but instead performs everything at inference time, making it easily applicable to an existing model. We show both qualitatively and quantitatively that our method allows better controllability and can produce results which are unattainable by existing models. Our code is available at: https://github.com/exx8/differential-diffusion
PPTC Benchmark: Evaluating Large Language Models for PowerPoint Task Completion
Recent evaluations of Large Language Models (LLMs) have centered around testing their zero-shot/few-shot capabilities for basic natural language tasks and their ability to translate instructions into tool APIs. However, the evaluation of LLMs utilizing complex tools to finish multi-turn, multi-modal instructions in a complex multi-modal environment has not been investigated. To address this gap, we introduce the PowerPoint Task Completion (PPTC) benchmark to assess LLMs' ability to create and edit PPT files based on user instructions. It contains 279 multi-turn sessions covering diverse topics and hundreds of instructions involving multi-modal operations. We also propose the PPTX-Match Evaluation System that evaluates if LLMs finish the instruction based on the prediction file rather than the label API sequence, thus it supports various LLM-generated API sequences. We measure 3 closed LLMs and 6 open-source LLMs. The results show that GPT-4 outperforms other LLMs with 75.1\% accuracy in single-turn dialogue testing but faces challenges in completing entire sessions, achieving just 6\% session accuracy. We find three main error causes in our benchmark: error accumulation in the multi-turn session, long PPT template processing, and multi-modality perception. These pose great challenges for future LLM and agent systems. We release the data, code, and evaluation system of PPTC at https://github.com/gydpku/PPTC.
GarmageNet: A Multimodal Generative Framework for Sewing Pattern Design and Generic Garment Modeling
Realistic digital garment modeling remains a labor-intensive task due to the intricate process of translating 2D sewing patterns into high-fidelity, simulation-ready 3D garments. We introduce GarmageNet, a unified generative framework that automates the creation of 2D sewing patterns, the construction of sewing relationships, and the synthesis of 3D garment initializations compatible with physics-based simulation. Central to our approach is Garmage, a novel garment representation that encodes each panel as a structured geometry image, effectively bridging the semantic and geometric gap between 2D structural patterns and 3D garment shapes. GarmageNet employs a latent diffusion transformer to synthesize panel-wise geometry images and integrates GarmageJigsaw, a neural module for predicting point-to-point sewing connections along panel contours. To support training and evaluation, we build GarmageSet, a large-scale dataset comprising over 10,000 professionally designed garments with detailed structural and style annotations. Our method demonstrates versatility and efficacy across multiple application scenarios, including scalable garment generation from multi-modal design concepts (text prompts, sketches, photographs), automatic modeling from raw flat sewing patterns, pattern recovery from unstructured point clouds, and progressive garment editing using conventional instructions-laying the foundation for fully automated, production-ready pipelines in digital fashion. Project page: https://style3d.github.io/garmagenet.
Instructive3D: Editing Large Reconstruction Models with Text Instructions
Transformer based methods have enabled users to create, modify, and comprehend text and image data. Recently proposed Large Reconstruction Models (LRMs) further extend this by providing the ability to generate high-quality 3D models with the help of a single object image. These models, however, lack the ability to manipulate or edit the finer details, such as adding standard design patterns or changing the color and reflectance of the generated objects, thus lacking fine-grained control that may be very helpful in domains such as augmented reality, animation and gaming. Naively training LRMs for this purpose would require generating precisely edited images and 3D object pairs, which is computationally expensive. In this paper, we propose Instructive3D, a novel LRM based model that integrates generation and fine-grained editing, through user text prompts, of 3D objects into a single model. We accomplish this by adding an adapter that performs a diffusion process conditioned on a text prompt specifying edits in the triplane latent space representation of 3D object models. Our method does not require the generation of edited 3D objects. Additionally, Instructive3D allows us to perform geometrically consistent modifications, as the edits done through user-defined text prompts are applied to the triplane latent representation thus enhancing the versatility and precision of 3D objects generated. We compare the objects generated by Instructive3D and a baseline that first generates the 3D object meshes using a standard LRM model and then edits these 3D objects using text prompts when images are provided from the Objaverse LVIS dataset. We find that Instructive3D produces qualitatively superior 3D objects with the properties specified by the edit prompts.
AutoVFX: Physically Realistic Video Editing from Natural Language Instructions
Modern visual effects (VFX) software has made it possible for skilled artists to create imagery of virtually anything. However, the creation process remains laborious, complex, and largely inaccessible to everyday users. In this work, we present AutoVFX, a framework that automatically creates realistic and dynamic VFX videos from a single video and natural language instructions. By carefully integrating neural scene modeling, LLM-based code generation, and physical simulation, AutoVFX is able to provide physically-grounded, photorealistic editing effects that can be controlled directly using natural language instructions. We conduct extensive experiments to validate AutoVFX's efficacy across a diverse spectrum of videos and instructions. Quantitative and qualitative results suggest that AutoVFX outperforms all competing methods by a large margin in generative quality, instruction alignment, editing versatility, and physical plausibility.
Instruct-NeRF2NeRF: Editing 3D Scenes with Instructions
We propose a method for editing NeRF scenes with text-instructions. Given a NeRF of a scene and the collection of images used to reconstruct it, our method uses an image-conditioned diffusion model (InstructPix2Pix) to iteratively edit the input images while optimizing the underlying scene, resulting in an optimized 3D scene that respects the edit instruction. We demonstrate that our proposed method is able to edit large-scale, real-world scenes, and is able to accomplish more realistic, targeted edits than prior work.
CoEdIT: Text Editing by Task-Specific Instruction Tuning
Text editing or revision is an essential function of the human writing process. Understanding the capabilities of LLMs for making high-quality revisions and collaborating with human writers is a critical step toward building effective writing assistants. With the prior success of LLMs and instruction tuning, we leverage instruction-tuned LLMs for text revision to improve the quality of user-generated text and improve the efficiency of the process. We introduce CoEdIT, a state-of-the-art text editing model for writing assistance. CoEdIT takes instructions from the user specifying the attributes of the desired text, such as "Make the sentence simpler" or "Write it in a more neutral style," and outputs the edited text. We present a large language model fine-tuned on a diverse collection of task-specific instructions for text editing (a total of 82K instructions). Our model (1) achieves state-of-the-art performance on various text editing benchmarks, (2) is competitive with publicly available largest-sized LLMs trained on instructions while being sim60x smaller, (3) is capable of generalizing to unseen edit instructions, and (4) exhibits compositional comprehension abilities to generalize to instructions containing different combinations of edit actions. Through extensive qualitative and quantitative analysis, we show that writers prefer the edits suggested by CoEdIT, relative to other state-of-the-art text editing models. Our code and dataset are publicly available.
Guiding Instruction-based Image Editing via Multimodal Large Language Models
Instruction-based image editing improves the controllability and flexibility of image manipulation via natural commands without elaborate descriptions or regional masks. However, human instructions are sometimes too brief for current methods to capture and follow. Multimodal large language models (MLLMs) show promising capabilities in cross-modal understanding and visual-aware response generation via LMs. We investigate how MLLMs facilitate edit instructions and present MLLM-Guided Image Editing (MGIE). MGIE learns to derive expressive instructions and provides explicit guidance. The editing model jointly captures this visual imagination and performs manipulation through end-to-end training. We evaluate various aspects of Photoshop-style modification, global photo optimization, and local editing. Extensive experimental results demonstrate that expressive instructions are crucial to instruction-based image editing, and our MGIE can lead to a notable improvement in automatic metrics and human evaluation while maintaining competitive inference efficiency.
mEdIT: Multilingual Text Editing via Instruction Tuning
We introduce mEdIT, a multi-lingual extension to CoEdIT -- the recent state-of-the-art text editing models for writing assistance. mEdIT models are trained by fine-tuning multi-lingual large, pre-trained language models (LLMs) via instruction tuning. They are designed to take instructions from the user specifying the attributes of the desired text in the form of natural language instructions, such as Grammatik korrigieren (German) or Parafrasee la oraci\'on (Spanish). We build mEdIT by curating data from multiple publicly available human-annotated text editing datasets for three text editing tasks (Grammatical Error Correction (GEC), Text Simplification, and Paraphrasing) across diverse languages belonging to six different language families. We detail the design and training of mEdIT models and demonstrate their strong performance on many multi-lingual text editing benchmarks against other multilingual LLMs. We also find that mEdIT generalizes effectively to new languages over multilingual baselines. We publicly release our data, code, and trained models at https://github.com/vipulraheja/medit.
Instruct-CLIP: Improving Instruction-Guided Image Editing with Automated Data Refinement Using Contrastive Learning
Although natural language instructions offer an intuitive way to guide automated image editing, deep-learning models often struggle to achieve high-quality results, largely due to challenges in creating large, high-quality training datasets. Previous work has typically relied on text-toimage (T2I) generative models to produce pairs of original and edited images that simulate the input/output of an instruction-guided image-editing model. However, these image pairs often fail to align with the specified edit instructions due to the limitations of T2I models, which negatively impacts models trained on such datasets. To address this, we present Instruct-CLIP, a self-supervised method that learns the semantic changes between original and edited images to refine and better align the instructions in existing datasets. Furthermore, we adapt Instruct-CLIP to handle noisy latent images and diffusion timesteps so that it can be used to train latent diffusion models (LDMs) [19] and efficiently enforce alignment between the edit instruction and the image changes in latent space at any step of the diffusion pipeline. We use Instruct-CLIP to correct the InstructPix2Pix dataset and get over 120K refined samples we then use to fine-tune their model, guided by our novel Instruct-CLIP-based loss function. The resulting model can produce edits that are more aligned with the given instructions. Our code and dataset are available at https://github.com/SherryXTChen/Instruct-CLIP.git.
ClickDiffusion: Harnessing LLMs for Interactive Precise Image Editing
Recently, researchers have proposed powerful systems for generating and manipulating images using natural language instructions. However, it is difficult to precisely specify many common classes of image transformations with text alone. For example, a user may wish to change the location and breed of a particular dog in an image with several similar dogs. This task is quite difficult with natural language alone, and would require a user to write a laboriously complex prompt that both disambiguates the target dog and describes the destination. We propose ClickDiffusion, a system for precise image manipulation and generation that combines natural language instructions with visual feedback provided by the user through a direct manipulation interface. We demonstrate that by serializing both an image and a multi-modal instruction into a textual representation it is possible to leverage LLMs to perform precise transformations of the layout and appearance of an image. Code available at https://github.com/poloclub/ClickDiffusion.
VEGGIE: Instructional Editing and Reasoning of Video Concepts with Grounded Generation
Recent video diffusion models have enhanced video editing, but it remains challenging to handle instructional editing and diverse tasks (e.g., adding, removing, changing) within a unified framework. In this paper, we introduce VEGGIE, a Video Editor with Grounded Generation from Instructions, a simple end-to-end framework that unifies video concept editing, grounding, and reasoning based on diverse user instructions. Specifically, given a video and text query, VEGGIE first utilizes an MLLM to interpret user intentions in instructions and ground them to the video contexts, generating frame-specific grounded task queries for pixel-space responses. A diffusion model then renders these plans and generates edited videos that align with user intent. To support diverse tasks and complex instructions, we employ a curriculum learning strategy: first aligning the MLLM and video diffusion model with large-scale instructional image editing data, followed by end-to-end fine-tuning on high-quality multitask video data. Additionally, we introduce a novel data synthesis pipeline to generate paired instructional video editing data for model training. It transforms static image data into diverse, high-quality video editing samples by leveraging Image-to-Video models to inject dynamics. VEGGIE shows strong performance in instructional video editing with different editing skills, outperforming the best instructional baseline as a versatile model, while other models struggle with multi-tasking. VEGGIE also excels in video object grounding and reasoning segmentation, where other baselines fail. We further reveal how the multiple tasks help each other and highlight promising applications like zero-shot multimodal instructional and in-context video editing.
StyleBooth: Image Style Editing with Multimodal Instruction
Given an original image, image editing aims to generate an image that align with the provided instruction. The challenges are to accept multimodal inputs as instructions and a scarcity of high-quality training data, including crucial triplets of source/target image pairs and multimodal (text and image) instructions. In this paper, we focus on image style editing and present StyleBooth, a method that proposes a comprehensive framework for image editing and a feasible strategy for building a high-quality style editing dataset. We integrate encoded textual instruction and image exemplar as a unified condition for diffusion model, enabling the editing of original image following multimodal instructions. Furthermore, by iterative style-destyle tuning and editing and usability filtering, the StyleBooth dataset provides content-consistent stylized/plain image pairs in various categories of styles. To show the flexibility of StyleBooth, we conduct experiments on diverse tasks, such as text-based style editing, exemplar-based style editing and compositional style editing. The results demonstrate that the quality and variety of training data significantly enhance the ability to preserve content and improve the overall quality of generated images in editing tasks. Project page can be found at https://ali-vilab.github.io/stylebooth-page/.
Control4D: Dynamic Portrait Editing by Learning 4D GAN from 2D Diffusion-based Editor
Recent years have witnessed considerable achievements in editing images with text instructions. When applying these editors to dynamic scene editing, the new-style scene tends to be temporally inconsistent due to the frame-by-frame nature of these 2D editors. To tackle this issue, we propose Control4D, a novel approach for high-fidelity and temporally consistent 4D portrait editing. Control4D is built upon an efficient 4D representation with a 2D diffusion-based editor. Instead of using direct supervisions from the editor, our method learns a 4D GAN from it and avoids the inconsistent supervision signals. Specifically, we employ a discriminator to learn the generation distribution based on the edited images and then update the generator with the discrimination signals. For more stable training, multi-level information is extracted from the edited images and used to facilitate the learning of the generator. Experimental results show that Control4D surpasses previous approaches and achieves more photo-realistic and consistent 4D editing performances. The link to our project website is https://control4darxiv.github.io.
EditWorld: Simulating World Dynamics for Instruction-Following Image Editing
Diffusion models have significantly improved the performance of image editing. Existing methods realize various approaches to achieve high-quality image editing, including but not limited to text control, dragging operation, and mask-and-inpainting. Among these, instruction-based editing stands out for its convenience and effectiveness in following human instructions across diverse scenarios. However, it still focuses on simple editing operations like adding, replacing, or deleting, and falls short of understanding aspects of world dynamics that convey the realistic dynamic nature in the physical world. Therefore, this work, EditWorld, introduces a new editing task, namely world-instructed image editing, which defines and categorizes the instructions grounded by various world scenarios. We curate a new image editing dataset with world instructions using a set of large pretrained models (e.g., GPT-3.5, Video-LLava and SDXL). To enable sufficient simulation of world dynamics for image editing, our EditWorld trains model in the curated dataset, and improves instruction-following ability with designed post-edit strategy. Extensive experiments demonstrate our method significantly outperforms existing editing methods in this new task. Our dataset and code will be available at https://github.com/YangLing0818/EditWorld
Evoke: Evoking Critical Thinking Abilities in LLMs via Reviewer-Author Prompt Editing
Large language models (LLMs) have made impressive progress in natural language processing. These models rely on proper human instructions (or prompts) to generate suitable responses. However, the potential of LLMs are not fully harnessed by commonly-used prompting methods: many human-in-the-loop algorithms employ ad-hoc procedures for prompt selection; while auto prompt generation approaches are essentially searching all possible prompts randomly and inefficiently. We propose Evoke, an automatic prompt refinement framework. In Evoke, there are two instances of a same LLM: one as a reviewer (LLM-Reviewer), it scores the current prompt; the other as an author (LLM-Author), it edits the prompt by considering the edit history and the reviewer's feedback. Such an author-reviewer feedback loop ensures that the prompt is refined in each iteration. We further aggregate a data selection approach to Evoke, where only the hard samples are exposed to the LLM. The hard samples are more important because the LLM can develop deeper understanding of the tasks out of them, while the model may already know how to solve the easier cases. Experimental results show that Evoke significantly outperforms existing methods. For instance, in the challenging task of logical fallacy detection, Evoke scores above 80, while all other baseline methods struggle to reach 20.
InsViE-1M: Effective Instruction-based Video Editing with Elaborate Dataset Construction
Instruction-based video editing allows effective and interactive editing of videos using only instructions without extra inputs such as masks or attributes. However, collecting high-quality training triplets (source video, edited video, instruction) is a challenging task. Existing datasets mostly consist of low-resolution, short duration, and limited amount of source videos with unsatisfactory editing quality, limiting the performance of trained editing models. In this work, we present a high-quality Instruction-based Video Editing dataset with 1M triplets, namely InsViE-1M. We first curate high-resolution and high-quality source videos and images, then design an effective editing-filtering pipeline to construct high-quality editing triplets for model training. For a source video, we generate multiple edited samples of its first frame with different intensities of classifier-free guidance, which are automatically filtered by GPT-4o with carefully crafted guidelines. The edited first frame is propagated to subsequent frames to produce the edited video, followed by another round of filtering for frame quality and motion evaluation. We also generate and filter a variety of video editing triplets from high-quality images. With the InsViE-1M dataset, we propose a multi-stage learning strategy to train our InsViE model, progressively enhancing its instruction following and editing ability. Extensive experiments demonstrate the advantages of our InsViE-1M dataset and the trained model over state-of-the-art works. Codes are available at InsViE.
SyncNoise: Geometrically Consistent Noise Prediction for Text-based 3D Scene Editing
Text-based 2D diffusion models have demonstrated impressive capabilities in image generation and editing. Meanwhile, the 2D diffusion models also exhibit substantial potentials for 3D editing tasks. However, how to achieve consistent edits across multiple viewpoints remains a challenge. While the iterative dataset update method is capable of achieving global consistency, it suffers from slow convergence and over-smoothed textures. We propose SyncNoise, a novel geometry-guided multi-view consistent noise editing approach for high-fidelity 3D scene editing. SyncNoise synchronously edits multiple views with 2D diffusion models while enforcing multi-view noise predictions to be geometrically consistent, which ensures global consistency in both semantic structure and low-frequency appearance. To further enhance local consistency in high-frequency details, we set a group of anchor views and propagate them to their neighboring frames through cross-view reprojection. To improve the reliability of multi-view correspondences, we introduce depth supervision during training to enhance the reconstruction of precise geometries. Our method achieves high-quality 3D editing results respecting the textual instructions, especially in scenes with complex textures, by enhancing geometric consistency at the noise and pixel levels.
AnyEdit: Mastering Unified High-Quality Image Editing for Any Idea
Instruction-based image editing aims to modify specific image elements with natural language instructions. However, current models in this domain often struggle to accurately execute complex user instructions, as they are trained on low-quality data with limited editing types. We present AnyEdit, a comprehensive multi-modal instruction editing dataset, comprising 2.5 million high-quality editing pairs spanning over 20 editing types and five domains. We ensure the diversity and quality of the AnyEdit collection through three aspects: initial data diversity, adaptive editing process, and automated selection of editing results. Using the dataset, we further train a novel AnyEdit Stable Diffusion with task-aware routing and learnable task embedding for unified image editing. Comprehensive experiments on three benchmark datasets show that AnyEdit consistently boosts the performance of diffusion-based editing models. This presents prospects for developing instruction-driven image editing models that support human creativity.
NoHumansRequired: Autonomous High-Quality Image Editing Triplet Mining
Recent advances in generative modeling enable image editing assistants that follow natural language instructions without additional user input. Their supervised training requires millions of triplets: original image, instruction, edited image. Yet mining pixel-accurate examples is hard. Each edit must affect only prompt-specified regions, preserve stylistic coherence, respect physical plausibility, and retain visual appeal. The lack of robust automated edit-quality metrics hinders reliable automation at scale. We present an automated, modular pipeline that mines high-fidelity triplets across domains, resolutions, instruction complexities, and styles. Built on public generative models and running without human intervention, our system uses a task-tuned Gemini validator to score instruction adherence and aesthetics directly, removing any need for segmentation or grounding models. Inversion and compositional bootstrapping enlarge the mined set by approximately 2.2x, enabling large-scale high-fidelity training data. By automating the most repetitive annotation steps, the approach allows a new scale of training without human labeling effort. To democratize research in this resource-intensive area, we release NHR-Edit: an open dataset of 358k high-quality triplets. In the largest cross-dataset evaluation, it surpasses all public alternatives. We also release Bagel-NHR-Edit, an open-source fine-tuned Bagel model, which achieves state-of-the-art metrics in our experiments.
OmniEdit: Building Image Editing Generalist Models Through Specialist Supervision
Instruction-guided image editing methods have demonstrated significant potential by training diffusion models on automatically synthesized or manually annotated image editing pairs. However, these methods remain far from practical, real-life applications. We identify three primary challenges contributing to this gap. Firstly, existing models have limited editing skills due to the biased synthesis process. Secondly, these methods are trained with datasets with a high volume of noise and artifacts. This is due to the application of simple filtering methods like CLIP-score. Thirdly, all these datasets are restricted to a single low resolution and fixed aspect ratio, limiting the versatility to handle real-world use cases. In this paper, we present \omniedit, which is an omnipotent editor to handle seven different image editing tasks with any aspect ratio seamlessly. Our contribution is in four folds: (1) \omniedit is trained by utilizing the supervision from seven different specialist models to ensure task coverage. (2) we utilize importance sampling based on the scores provided by large multimodal models (like GPT-4o) instead of CLIP-score to improve the data quality. (3) we propose a new editing architecture called EditNet to greatly boost the editing success rate, (4) we provide images with different aspect ratios to ensure that our model can handle any image in the wild. We have curated a test set containing images of different aspect ratios, accompanied by diverse instructions to cover different tasks. Both automatic evaluation and human evaluations demonstrate that \omniedit can significantly outperform all the existing models. Our code, dataset and model will be available at https://tiger-ai-lab.github.io/OmniEdit/
Tailor3D: Customized 3D Assets Editing and Generation with Dual-Side Images
Recent advances in 3D AIGC have shown promise in directly creating 3D objects from text and images, offering significant cost savings in animation and product design. However, detailed edit and customization of 3D assets remains a long-standing challenge. Specifically, 3D Generation methods lack the ability to follow finely detailed instructions as precisely as their 2D image creation counterparts. Imagine you can get a toy through 3D AIGC but with undesired accessories and dressing. To tackle this challenge, we propose a novel pipeline called Tailor3D, which swiftly creates customized 3D assets from editable dual-side images. We aim to emulate a tailor's ability to locally change objects or perform overall style transfer. Unlike creating 3D assets from multiple views, using dual-side images eliminates conflicts on overlapping areas that occur when editing individual views. Specifically, it begins by editing the front view, then generates the back view of the object through multi-view diffusion. Afterward, it proceeds to edit the back views. Finally, a Dual-sided LRM is proposed to seamlessly stitch together the front and back 3D features, akin to a tailor sewing together the front and back of a garment. The Dual-sided LRM rectifies imperfect consistencies between the front and back views, enhancing editing capabilities and reducing memory burdens while seamlessly integrating them into a unified 3D representation with the LoRA Triplane Transformer. Experimental results demonstrate Tailor3D's effectiveness across various 3D generation and editing tasks, including 3D generative fill and style transfer. It provides a user-friendly, efficient solution for editing 3D assets, with each editing step taking only seconds to complete.
TIP: Text-Driven Image Processing with Semantic and Restoration Instructions
Text-driven diffusion models have become increasingly popular for various image editing tasks, including inpainting, stylization, and object replacement. However, it still remains an open research problem to adopt this language-vision paradigm for more fine-level image processing tasks, such as denoising, super-resolution, deblurring, and compression artifact removal. In this paper, we develop TIP, a Text-driven Image Processing framework that leverages natural language as a user-friendly interface to control the image restoration process. We consider the capacity of text information in two dimensions. First, we use content-related prompts to enhance the semantic alignment, effectively alleviating identity ambiguity in the restoration outcomes. Second, our approach is the first framework that supports fine-level instruction through language-based quantitative specification of the restoration strength, without the need for explicit task-specific design. In addition, we introduce a novel fusion mechanism that augments the existing ControlNet architecture by learning to rescale the generative prior, thereby achieving better restoration fidelity. Our extensive experiments demonstrate the superior restoration performance of TIP compared to the state of the arts, alongside offering the flexibility of text-based control over the restoration effects.
MIGE: A Unified Framework for Multimodal Instruction-Based Image Generation and Editing
Despite significant progress in diffusion-based image generation, subject-driven generation and instruction-based editing remain challenging. Existing methods typically treat them separately, struggling with limited high-quality data and poor generalization. However, both tasks require capturing complex visual variations while maintaining consistency between inputs and outputs. Therefore, we propose MIGE, a unified framework that standardizes task representations using multimodal instructions. It treats subject-driven generation as creation on a blank canvas and instruction-based editing as modification of an existing image, establishing a shared input-output formulation. MIGE introduces a novel multimodal encoder that maps free-form multimodal instructions into a unified vision-language space, integrating visual and semantic features through a feature fusion mechanism.This unification enables joint training of both tasks, providing two key advantages: (1) Cross-Task Enhancement: By leveraging shared visual and semantic representations, joint training improves instruction adherence and visual consistency in both subject-driven generation and instruction-based editing. (2) Generalization: Learning in a unified format facilitates cross-task knowledge transfer, enabling MIGE to generalize to novel compositional tasks, including instruction-based subject-driven editing. Experiments show that MIGE excels in both subject-driven generation and instruction-based editing while setting a state-of-the-art in the new task of instruction-based subject-driven editing. Code and model have been publicly available at https://github.com/Eureka-Maggie/MIGE.
GSEdit: Efficient Text-Guided Editing of 3D Objects via Gaussian Splatting
We present GSEdit, a pipeline for text-guided 3D object editing based on Gaussian Splatting models. Our method enables the editing of the style and appearance of 3D objects without altering their main details, all in a matter of minutes on consumer hardware. We tackle the problem by leveraging Gaussian splatting to represent 3D scenes, and we optimize the model while progressively varying the image supervision by means of a pretrained image-based diffusion model. The input object may be given as a 3D triangular mesh, or directly provided as Gaussians from a generative model such as DreamGaussian. GSEdit ensures consistency across different viewpoints, maintaining the integrity of the original object's information. Compared to previously proposed methods relying on NeRF-like MLP models, GSEdit stands out for its efficiency, making 3D editing tasks much faster. Our editing process is refined via the application of the SDS loss, ensuring that our edits are both precise and accurate. Our comprehensive evaluation demonstrates that GSEdit effectively alters object shape and appearance following the given textual instructions while preserving their coherence and detail.
LOCATEdit: Graph Laplacian Optimized Cross Attention for Localized Text-Guided Image Editing
Text-guided image editing aims to modify specific regions of an image according to natural language instructions while maintaining the general structure and the background fidelity. Existing methods utilize masks derived from cross-attention maps generated from diffusion models to identify the target regions for modification. However, since cross-attention mechanisms focus on semantic relevance, they struggle to maintain the image integrity. As a result, these methods often lack spatial consistency, leading to editing artifacts and distortions. In this work, we address these limitations and introduce LOCATEdit, which enhances cross-attention maps through a graph-based approach utilizing self-attention-derived patch relationships to maintain smooth, coherent attention across image regions, ensuring that alterations are limited to the designated items while retaining the surrounding structure. \method consistently and substantially outperforms existing baselines on PIE-Bench, demonstrating its state-of-the-art performance and effectiveness on various editing tasks. Code can be found on https://github.com/LOCATEdit/LOCATEdit/
EditCLIP: Representation Learning for Image Editing
We introduce EditCLIP, a novel representation-learning approach for image editing. Our method learns a unified representation of edits by jointly encoding an input image and its edited counterpart, effectively capturing their transformation. To evaluate its effectiveness, we employ EditCLIP to solve two tasks: exemplar-based image editing and automated edit evaluation. In exemplar-based image editing, we replace text-based instructions in InstructPix2Pix with EditCLIP embeddings computed from a reference exemplar image pair. Experiments demonstrate that our approach outperforms state-of-the-art methods while being more efficient and versatile. For automated evaluation, EditCLIP assesses image edits by measuring the similarity between the EditCLIP embedding of a given image pair and either a textual editing instruction or the EditCLIP embedding of another reference image pair. Experiments show that EditCLIP aligns more closely with human judgments than existing CLIP-based metrics, providing a reliable measure of edit quality and structural preservation.
Memory-assisted prompt editing to improve GPT-3 after deployment
Large LMs such as GPT-3 are powerful, but can commit mistakes that are obvious to humans. For example, GPT-3 would mistakenly interpret "What word is similar to good?" to mean a homophone, while the user intended a synonym. Our goal is to effectively correct such errors via user interactions with the system but without retraining, which will be prohibitively costly. We pair GPT-3 with a growing memory of recorded cases where the model misunderstood the user's intents, along with user feedback for clarification. Such a memory allows our system to produce enhanced prompts for any new query based on the user feedback for error correction on similar cases in the past. On four tasks (two lexical tasks, two advanced ethical reasoning tasks), we show how a (simulated) user can interactively teach a deployed GPT-3, substantially increasing its accuracy over the queries with different kinds of misunderstandings by the GPT-3. Our approach is a step towards the low-cost utility enhancement for very large pre-trained LMs. Code, data, and instructions to implement MEMPROMPT for a new task at https://www.memprompt.com/.
ReEdit: Multimodal Exemplar-Based Image Editing with Diffusion Models
Modern Text-to-Image (T2I) Diffusion models have revolutionized image editing by enabling the generation of high-quality photorealistic images. While the de facto method for performing edits with T2I models is through text instructions, this approach non-trivial due to the complex many-to-many mapping between natural language and images. In this work, we address exemplar-based image editing -- the task of transferring an edit from an exemplar pair to a content image(s). We propose ReEdit, a modular and efficient end-to-end framework that captures edits in both text and image modalities while ensuring the fidelity of the edited image. We validate the effectiveness of ReEdit through extensive comparisons with state-of-the-art baselines and sensitivity analyses of key design choices. Our results demonstrate that ReEdit consistently outperforms contemporary approaches both qualitatively and quantitatively. Additionally, ReEdit boasts high practical applicability, as it does not require any task-specific optimization and is four times faster than the next best baseline.
FlexEdit: Marrying Free-Shape Masks to VLLM for Flexible Image Editing
Combining Vision Large Language Models (VLLMs) with diffusion models offers a powerful method for executing image editing tasks based on human language instructions. However, language instructions alone often fall short in accurately conveying user requirements, particularly when users want to add, replace elements in specific areas of an image. Luckily, masks can effectively indicate the exact locations or elements to be edited, while they require users to precisely draw the shapes at the desired locations, which is highly user-unfriendly. To address this, we propose FlexEdit, an end-to-end image editing method that leverages both free-shape masks and language instructions for Flexible Editing. Our approach employs a VLLM in comprehending the image content, mask, and user instructions. Additionally, we introduce the Mask Enhance Adapter (MEA) that fuses the embeddings of the VLLM with the image data, ensuring a seamless integration of mask information and model output embeddings. Furthermore, we construct FSMI-Edit, a benchmark specifically tailored for free-shape mask, including 8 types of free-shape mask. Extensive experiments show that our method achieves state-of-the-art (SOTA) performance in LLM-based image editing, and our simple prompting technique stands out in its effectiveness. The code and data can be found at https://github.com/A-new-b/flex_edit.
DialogPaint: A Dialog-based Image Editing Model
We present DialogPaint, an innovative framework that employs an interactive conversational approach for image editing. The framework comprises a pretrained dialogue model (Blenderbot) and a diffusion model (Stable Diffusion). The dialogue model engages in conversation with users to understand their requirements and generates concise instructions based on the dialogue. Subsequently, the Stable Diffusion model employs these instructions, along with the input image, to produce the desired output. Due to the difficulty of acquiring fine-tuning data for such models, we leverage multiple large-scale models to generate simulated dialogues and corresponding image pairs. After fine-tuning our framework with the synthesized data, we evaluate its performance in real application scenes. The results demonstrate that DialogPaint excels in both objective and subjective evaluation metrics effectively handling ambiguous instructions and performing tasks such as object replacement, style transfer, color modification. Moreover, our framework supports multi-round editing, allowing for the completion of complicated editing tasks.
Emu Edit: Precise Image Editing via Recognition and Generation Tasks
Instruction-based image editing holds immense potential for a variety of applications, as it enables users to perform any editing operation using a natural language instruction. However, current models in this domain often struggle with accurately executing user instructions. We present Emu Edit, a multi-task image editing model which sets state-of-the-art results in instruction-based image editing. To develop Emu Edit we train it to multi-task across an unprecedented range of tasks, such as region-based editing, free-form editing, and Computer Vision tasks, all of which are formulated as generative tasks. Additionally, to enhance Emu Edit's multi-task learning abilities, we provide it with learned task embeddings which guide the generation process towards the correct edit type. Both these elements are essential for Emu Edit's outstanding performance. Furthermore, we show that Emu Edit can generalize to new tasks, such as image inpainting, super-resolution, and compositions of editing tasks, with just a few labeled examples. This capability offers a significant advantage in scenarios where high-quality samples are scarce. Lastly, to facilitate a more rigorous and informed assessment of instructable image editing models, we release a new challenging and versatile benchmark that includes seven different image editing tasks.
Image Sculpting: Precise Object Editing with 3D Geometry Control
We present Image Sculpting, a new framework for editing 2D images by incorporating tools from 3D geometry and graphics. This approach differs markedly from existing methods, which are confined to 2D spaces and typically rely on textual instructions, leading to ambiguity and limited control. Image Sculpting converts 2D objects into 3D, enabling direct interaction with their 3D geometry. Post-editing, these objects are re-rendered into 2D, merging into the original image to produce high-fidelity results through a coarse-to-fine enhancement process. The framework supports precise, quantifiable, and physically-plausible editing options such as pose editing, rotation, translation, 3D composition, carving, and serial addition. It marks an initial step towards combining the creative freedom of generative models with the precision of graphics pipelines.
InstructEdit: Instruction-based Knowledge Editing for Large Language Models
Knowledge editing for large language models can offer an efficient solution to alter a model's behavior without negatively impacting the overall performance. However, the current approach encounters issues with limited generalizability across tasks, necessitating one distinct editor for each task, which significantly hinders the broader applications. To address this, we take the first step to analyze the multi-task generalization issue in knowledge editing. Specifically, we develop an instruction-based editing technique, termed InstructEdit, which facilitates the editor's adaptation to various task performances simultaneously using simple instructions. With only one unified editor for each LLM, we empirically demonstrate that InstructEdit can improve the editor's control, leading to an average 14.86% increase in Reliability in multi-task editing setting. Furthermore, experiments involving holdout unseen task illustrate that InstructEdit consistently surpass previous strong baselines. To further investigate the underlying mechanisms of instruction-based knowledge editing, we analyze the principal components of the editing gradient directions, which unveils that instructions can help control optimization direction with stronger OOD generalization. Code and datasets will be available in https://github.com/zjunlp/EasyEdit.
InstructCoder: Empowering Language Models for Code Editing
Code editing encompasses a variety of pragmatic tasks that developers deal with daily. Despite its relevance and practical usefulness, automatic code editing remains an underexplored area in the evolution of deep learning models, partly due to data scarcity. In this work, we explore the use of large language models (LLMs) to edit code based on user instructions, covering a broad range of implicit tasks such as comment insertion, code optimization, and code refactoring. To facilitate this, we introduce InstructCoder, the first dataset designed to adapt LLMs for general-purpose code editing, containing highdiversity code-editing tasks. It consists of over 114,000 instruction-input-output triplets and covers multiple distinct code editing scenarios. The dataset is systematically expanded through an iterative process that commences with code editing data sourced from GitHub commits as seed tasks. Seed and generated tasks are used subsequently to prompt ChatGPT for more task data. Our experiments demonstrate that open-source LLMs fine-tuned on InstructCoder can edit code correctly based on users' instructions most of the time, exhibiting unprecedented code-editing performance levels. Such results suggest that proficient instruction-finetuning can lead to significant amelioration in code editing abilities. The dataset and the source code are available at https://github.com/qishenghu/CodeInstruct.
LatentEditor: Text Driven Local Editing of 3D Scenes
While neural fields have made significant strides in view synthesis and scene reconstruction, editing them poses a formidable challenge due to their implicit encoding of geometry and texture information from multi-view inputs. In this paper, we introduce LatentEditor, an innovative framework designed to empower users with the ability to perform precise and locally controlled editing of neural fields using text prompts. Leveraging denoising diffusion models, we successfully embed real-world scenes into the latent space, resulting in a faster and more adaptable NeRF backbone for editing compared to traditional methods. To enhance editing precision, we introduce a delta score to calculate the 2D mask in the latent space that serves as a guide for local modifications while preserving irrelevant regions. Our novel pixel-level scoring approach harnesses the power of InstructPix2Pix (IP2P) to discern the disparity between IP2P conditional and unconditional noise predictions in the latent space. The edited latents conditioned on the 2D masks are then iteratively updated in the training set to achieve 3D local editing. Our approach achieves faster editing speeds and superior output quality compared to existing 3D editing models, bridging the gap between textual instructions and high-quality 3D scene editing in latent space. We show the superiority of our approach on four benchmark 3D datasets, LLFF, IN2N, NeRFStudio and NeRF-Art.
ACE++: Instruction-Based Image Creation and Editing via Context-Aware Content Filling
We report ACE++, an instruction-based diffusion framework that tackles various image generation and editing tasks. Inspired by the input format for the inpainting task proposed by FLUX.1-Fill-dev, we improve the Long-context Condition Unit (LCU) introduced in ACE and extend this input paradigm to any editing and generation tasks. To take full advantage of image generative priors, we develop a two-stage training scheme to minimize the efforts of finetuning powerful text-to-image diffusion models like FLUX.1-dev. In the first stage, we pre-train the model using task data with the 0-ref tasks from the text-to-image model. There are many models in the community based on the post-training of text-to-image foundational models that meet this training paradigm of the first stage. For example, FLUX.1-Fill-dev deals primarily with painting tasks and can be used as an initialization to accelerate the training process. In the second stage, we finetune the above model to support the general instructions using all tasks defined in ACE. To promote the widespread application of ACE++ in different scenarios, we provide a comprehensive set of models that cover both full finetuning and lightweight finetuning, while considering general applicability and applicability in vertical scenarios. The qualitative analysis showcases the superiority of ACE++ in terms of generating image quality and prompt following ability.
DocEdit-v2: Document Structure Editing Via Multimodal LLM Grounding
Document structure editing involves manipulating localized textual, visual, and layout components in document images based on the user's requests. Past works have shown that multimodal grounding of user requests in the document image and identifying the accurate structural components and their associated attributes remain key challenges for this task. To address these, we introduce the DocEdit-v2, a novel framework that performs end-to-end document editing by leveraging Large Multimodal Models (LMMs). It consists of three novel components: (1) Doc2Command, which simultaneously localizes edit regions of interest (RoI) and disambiguates user edit requests into edit commands; (2) LLM-based Command Reformulation prompting to tailor edit commands originally intended for specialized software into edit instructions suitable for generalist LMMs. (3) Moreover, DocEdit-v2 processes these outputs via Large Multimodal Models like GPT-4V and Gemini, to parse the document layout, execute edits on grounded Region of Interest (RoI), and generate the edited document image. Extensive experiments on the DocEdit dataset show that DocEdit-v2 significantly outperforms strong baselines on edit command generation (2-33%), RoI bounding box detection (12-31%), and overall document editing (1-12\%) tasks.
Spivavtor: An Instruction Tuned Ukrainian Text Editing Model
We introduce Spivavtor, a dataset, and instruction-tuned models for text editing focused on the Ukrainian language. Spivavtor is the Ukrainian-focused adaptation of the English-only CoEdIT model. Similar to CoEdIT, Spivavtor performs text editing tasks by following instructions in Ukrainian. This paper describes the details of the Spivavtor-Instruct dataset and Spivavtor models. We evaluate Spivavtor on a variety of text editing tasks in Ukrainian, such as Grammatical Error Correction (GEC), Text Simplification, Coherence, and Paraphrasing, and demonstrate its superior performance on all of them. We publicly release our best-performing models and data as resources to the community to advance further research in this space.
InstructAny2Pix: Flexible Visual Editing via Multimodal Instruction Following
The ability to provide fine-grained control for generating and editing visual imagery has profound implications for computer vision and its applications. Previous works have explored extending controllability in two directions: instruction tuning with text-based prompts and multi-modal conditioning. However, these works make one or more unnatural assumptions on the number and/or type of modality inputs used to express controllability. We propose InstructAny2Pix, a flexible multi-modal instruction-following system that enables users to edit an input image using instructions involving audio, images, and text. InstructAny2Pix consists of three building blocks that facilitate this capability: a multi-modal encoder that encodes different modalities such as images and audio into a unified latent space, a diffusion model that learns to decode representations in this latent space into images, and a multi-modal LLM that can understand instructions involving multiple images and audio pieces and generate a conditional embedding of the desired output, which can be used by the diffusion decoder. Additionally, to facilitate training efficiency and improve generation quality, we include an additional refinement prior module that enhances the visual quality of LLM outputs. These designs are critical to the performance of our system. We demonstrate that our system can perform a series of novel instruction-guided editing tasks. The code is available at https://github.com/jacklishufan/InstructAny2Pix.git
Slicedit: Zero-Shot Video Editing With Text-to-Image Diffusion Models Using Spatio-Temporal Slices
Text-to-image (T2I) diffusion models achieve state-of-the-art results in image synthesis and editing. However, leveraging such pretrained models for video editing is considered a major challenge. Many existing works attempt to enforce temporal consistency in the edited video through explicit correspondence mechanisms, either in pixel space or between deep features. These methods, however, struggle with strong nonrigid motion. In this paper, we introduce a fundamentally different approach, which is based on the observation that spatiotemporal slices of natural videos exhibit similar characteristics to natural images. Thus, the same T2I diffusion model that is normally used only as a prior on video frames, can also serve as a strong prior for enhancing temporal consistency by applying it on spatiotemporal slices. Based on this observation, we present Slicedit, a method for text-based video editing that utilizes a pretrained T2I diffusion model to process both spatial and spatiotemporal slices. Our method generates videos that retain the structure and motion of the original video while adhering to the target text. Through extensive experiments, we demonstrate Slicedit's ability to edit a wide range of real-world videos, confirming its clear advantages compared to existing competing methods. Webpage: https://matankleiner.github.io/slicedit/
EditP23: 3D Editing via Propagation of Image Prompts to Multi-View
We present EditP23, a method for mask-free 3D editing that propagates 2D image edits to multi-view representations in a 3D-consistent manner. In contrast to traditional approaches that rely on text-based prompting or explicit spatial masks, EditP23 enables intuitive edits by conditioning on a pair of images: an original view and its user-edited counterpart. These image prompts are used to guide an edit-aware flow in the latent space of a pre-trained multi-view diffusion model, allowing the edit to be coherently propagated across views. Our method operates in a feed-forward manner, without optimization, and preserves the identity of the original object, in both structure and appearance. We demonstrate its effectiveness across a range of object categories and editing scenarios, achieving high fidelity to the source while requiring no manual masks.
Fashion Matrix: Editing Photos by Just Talking
The utilization of Large Language Models (LLMs) for the construction of AI systems has garnered significant attention across diverse fields. The extension of LLMs to the domain of fashion holds substantial commercial potential but also inherent challenges due to the intricate semantic interactions in fashion-related generation. To address this issue, we developed a hierarchical AI system called Fashion Matrix dedicated to editing photos by just talking. This system facilitates diverse prompt-driven tasks, encompassing garment or accessory replacement, recoloring, addition, and removal. Specifically, Fashion Matrix employs LLM as its foundational support and engages in iterative interactions with users. It employs a range of Semantic Segmentation Models (e.g., Grounded-SAM, MattingAnything, etc.) to delineate the specific editing masks based on user instructions. Subsequently, Visual Foundation Models (e.g., Stable Diffusion, ControlNet, etc.) are leveraged to generate edited images from text prompts and masks, thereby facilitating the automation of fashion editing processes. Experiments demonstrate the outstanding ability of Fashion Matrix to explores the collaborative potential of functionally diverse pre-trained models in the domain of fashion editing.
Pathways on the Image Manifold: Image Editing via Video Generation
Recent advances in image editing, driven by image diffusion models, have shown remarkable progress. However, significant challenges remain, as these models often struggle to follow complex edit instructions accurately and frequently compromise fidelity by altering key elements of the original image. Simultaneously, video generation has made remarkable strides, with models that effectively function as consistent and continuous world simulators. In this paper, we propose merging these two fields by utilizing image-to-video models for image editing. We reformulate image editing as a temporal process, using pretrained video models to create smooth transitions from the original image to the desired edit. This approach traverses the image manifold continuously, ensuring consistent edits while preserving the original image's key aspects. Our approach achieves state-of-the-art results on text-based image editing, demonstrating significant improvements in both edit accuracy and image preservation.
ACE: All-round Creator and Editor Following Instructions via Diffusion Transformer
Diffusion models have emerged as a powerful generative technology and have been found to be applicable in various scenarios. Most existing foundational diffusion models are primarily designed for text-guided visual generation and do not support multi-modal conditions, which are essential for many visual editing tasks. This limitation prevents these foundational diffusion models from serving as a unified model in the field of visual generation, like GPT-4 in the natural language processing field. In this work, we propose ACE, an All-round Creator and Editor, which achieves comparable performance compared to those expert models in a wide range of visual generation tasks. To achieve this goal, we first introduce a unified condition format termed Long-context Condition Unit (LCU), and propose a novel Transformer-based diffusion model that uses LCU as input, aiming for joint training across various generation and editing tasks. Furthermore, we propose an efficient data collection approach to address the issue of the absence of available training data. It involves acquiring pairwise images with synthesis-based or clustering-based pipelines and supplying these pairs with accurate textual instructions by leveraging a fine-tuned multi-modal large language model. To comprehensively evaluate the performance of our model, we establish a benchmark of manually annotated pairs data across a variety of visual generation tasks. The extensive experimental results demonstrate the superiority of our model in visual generation fields. Thanks to the all-in-one capabilities of our model, we can easily build a multi-modal chat system that responds to any interactive request for image creation using a single model to serve as the backend, avoiding the cumbersome pipeline typically employed in visual agents. Code and models will be available on the project page: https://ali-vilab.github.io/ace-page/.
ReSpace: Text-Driven 3D Scene Synthesis and Editing with Preference Alignment
Scene synthesis and editing has emerged as a promising direction in computer graphics. Current trained approaches for 3D indoor scenes either oversimplify object semantics through one-hot class encodings (e.g., 'chair' or 'table'), require masked diffusion for editing, ignore room boundaries, or rely on floor plan renderings that fail to capture complex layouts. In contrast, LLM-based methods enable richer semantics via natural language (e.g., 'modern studio with light wood furniture') but do not support editing, remain limited to rectangular layouts or rely on weak spatial reasoning from implicit world models. We introduce ReSpace, a generative framework for text-driven 3D indoor scene synthesis and editing using autoregressive language models. Our approach features a compact structured scene representation with explicit room boundaries that frames scene editing as a next-token prediction task. We leverage a dual-stage training approach combining supervised fine-tuning and preference alignment, enabling a specially trained language model for object addition that accounts for user instructions, spatial geometry, object semantics, and scene-level composition. For scene editing, we employ a zero-shot LLM to handle object removal and prompts for addition. We further introduce a novel voxelization-based evaluation that captures fine-grained geometry beyond 3D bounding boxes. Experimental results surpass state-of-the-art on object addition while maintaining competitive results on full scene synthesis.
InsightEdit: Towards Better Instruction Following for Image Editing
In this paper, we focus on the task of instruction-based image editing. Previous works like InstructPix2Pix, InstructDiffusion, and SmartEdit have explored end-to-end editing. However, two limitations still remain: First, existing datasets suffer from low resolution, poor background consistency, and overly simplistic instructions. Second, current approaches mainly condition on the text while the rich image information is underexplored, therefore inferior in complex instruction following and maintaining background consistency. Targeting these issues, we first curated the AdvancedEdit dataset using a novel data construction pipeline, formulating a large-scale dataset with high visual quality, complex instructions, and good background consistency. Then, to further inject the rich image information, we introduce a two-stream bridging mechanism utilizing both the textual and visual features reasoned by the powerful Multimodal Large Language Models (MLLM) to guide the image editing process more precisely. Extensive results demonstrate that our approach, InsightEdit, achieves state-of-the-art performance, excelling in complex instruction following and maintaining high background consistency with the original image.
CompBench: Benchmarking Complex Instruction-guided Image Editing
While real-world applications increasingly demand intricate scene manipulation, existing instruction-guided image editing benchmarks often oversimplify task complexity and lack comprehensive, fine-grained instructions. To bridge this gap, we introduce, a large-scale benchmark specifically designed for complex instruction-guided image editing. CompBench features challenging editing scenarios that incorporate fine-grained instruction following, spatial and contextual reasoning, thereby enabling comprehensive evaluation of image editing models' precise manipulation capabilities. To construct CompBench, We propose an MLLM-human collaborative framework with tailored task pipelines. Furthermore, we propose an instruction decoupling strategy that disentangles editing intents into four key dimensions: location, appearance, dynamics, and objects, ensuring closer alignment between instructions and complex editing requirements. Extensive evaluations reveal that CompBench exposes fundamental limitations of current image editing models and provides critical insights for the development of next-generation instruction-guided image editing systems. The dataset, code, and models are available in https://comp-bench.github.io/.
SmartFreeEdit: Mask-Free Spatial-Aware Image Editing with Complex Instruction Understanding
Recent advancements in image editing have utilized large-scale multimodal models to enable intuitive, natural instruction-driven interactions. However, conventional methods still face significant challenges, particularly in spatial reasoning, precise region segmentation, and maintaining semantic consistency, especially in complex scenes. To overcome these challenges, we introduce SmartFreeEdit, a novel end-to-end framework that integrates a multimodal large language model (MLLM) with a hypergraph-enhanced inpainting architecture, enabling precise, mask-free image editing guided exclusively by natural language instructions. The key innovations of SmartFreeEdit include:(1)the introduction of region aware tokens and a mask embedding paradigm that enhance the spatial understanding of complex scenes;(2) a reasoning segmentation pipeline designed to optimize the generation of editing masks based on natural language instructions;and (3) a hypergraph-augmented inpainting module that ensures the preservation of both structural integrity and semantic coherence during complex edits, overcoming the limitations of local-based image generation. Extensive experiments on the Reason-Edit benchmark demonstrate that SmartFreeEdit surpasses current state-of-the-art methods across multiple evaluation metrics, including segmentation accuracy, instruction adherence, and visual quality preservation, while addressing the issue of local information focus and improving global consistency in the edited image. Our project will be available at https://github.com/smileformylove/SmartFreeEdit.
AdaptiveDrag: Semantic-Driven Dragging on Diffusion-Based Image Editing
Recently, several point-based image editing methods (e.g., DragDiffusion, FreeDrag, DragNoise) have emerged, yielding precise and high-quality results based on user instructions. However, these methods often make insufficient use of semantic information, leading to less desirable results. In this paper, we proposed a novel mask-free point-based image editing method, AdaptiveDrag, which provides a more flexible editing approach and generates images that better align with user intent. Specifically, we design an auto mask generation module using super-pixel division for user-friendliness. Next, we leverage a pre-trained diffusion model to optimize the latent, enabling the dragging of features from handle points to target points. To ensure a comprehensive connection between the input image and the drag process, we have developed a semantic-driven optimization. We design adaptive steps that are supervised by the positions of the points and the semantic regions derived from super-pixel segmentation. This refined optimization process also leads to more realistic and accurate drag results. Furthermore, to address the limitations in the generative consistency of the diffusion model, we introduce an innovative corresponding loss during the sampling process. Building on these effective designs, our method delivers superior generation results using only the single input image and the handle-target point pairs. Extensive experiments have been conducted and demonstrate that the proposed method outperforms others in handling various drag instructions (e.g., resize, movement, extension) across different domains (e.g., animals, human face, land space, clothing).
Multi-modal Molecule Structure-text Model for Text-based Retrieval and Editing
There is increasing adoption of artificial intelligence in drug discovery. However, existing studies use machine learning to mainly utilize the chemical structures of molecules but ignore the vast textual knowledge available in chemistry. Incorporating textual knowledge enables us to realize new drug design objectives, adapt to text-based instructions and predict complex biological activities. Here we present a multi-modal molecule structure-text model, MoleculeSTM, by jointly learning molecules' chemical structures and textual descriptions via a contrastive learning strategy. To train MoleculeSTM, we construct a large multi-modal dataset, namely, PubChemSTM, with over 280,000 chemical structure-text pairs. To demonstrate the effectiveness and utility of MoleculeSTM, we design two challenging zero-shot tasks based on text instructions, including structure-text retrieval and molecule editing. MoleculeSTM has two main properties: open vocabulary and compositionality via natural language. In experiments, MoleculeSTM obtains the state-of-the-art generalization ability to novel biochemical concepts across various benchmarks.
ChatFace: Chat-Guided Real Face Editing via Diffusion Latent Space Manipulation
Editing real facial images is a crucial task in computer vision with significant demand in various real-world applications. While GAN-based methods have showed potential in manipulating images especially when combined with CLIP, these methods are limited in their ability to reconstruct real images due to challenging GAN inversion capability. Despite the successful image reconstruction achieved by diffusion-based methods, there are still challenges in effectively manipulating fine-gained facial attributes with textual instructions.To address these issues and facilitate convenient manipulation of real facial images, we propose a novel approach that conduct text-driven image editing in the semantic latent space of diffusion model. By aligning the temporal feature of the diffusion model with the semantic condition at generative process, we introduce a stable manipulation strategy, which perform precise zero-shot manipulation effectively. Furthermore, we develop an interactive system named ChatFace, which combines the zero-shot reasoning ability of large language models to perform efficient manipulations in diffusion semantic latent space. This system enables users to perform complex multi-attribute manipulations through dialogue, opening up new possibilities for interactive image editing. Extensive experiments confirmed that our approach outperforms previous methods and enables precise editing of real facial images, making it a promising candidate for real-world applications. Project page: https://dongxuyue.github.io/chatface/
OmniV2V: Versatile Video Generation and Editing via Dynamic Content Manipulation
The emergence of Diffusion Transformers (DiT) has brought significant advancements to video generation, especially in text-to-video and image-to-video tasks. Although video generation is widely applied in various fields, most existing models are limited to single scenarios and cannot perform diverse video generation and editing through dynamic content manipulation. We propose OmniV2V, a video model capable of generating and editing videos across different scenarios based on various operations, including: object movement, object addition, mask-guided video edit, try-on, inpainting, outpainting, human animation, and controllable character video synthesis. We explore a unified dynamic content manipulation injection module, which effectively integrates the requirements of the above tasks. In addition, we design a visual-text instruction module based on LLaVA, enabling the model to effectively understand the correspondence between visual content and instructions. Furthermore, we build a comprehensive multi-task data processing system. Since there is data overlap among various tasks, this system can efficiently provide data augmentation. Using this system, we construct a multi-type, multi-scenario OmniV2V dataset and its corresponding OmniV2V-Test benchmark. Extensive experiments show that OmniV2V works as well as, and sometimes better than, the best existing open-source and commercial models for many video generation and editing tasks.
Envisioning Beyond the Pixels: Benchmarking Reasoning-Informed Visual Editing
Large Multi-modality Models (LMMs) have made significant progress in visual understanding and generation, but they still face challenges in General Visual Editing, particularly in following complex instructions, preserving appearance consistency, and supporting flexible input formats. To address this gap, we introduce RISEBench, the first benchmark for evaluating Reasoning-Informed viSual Editing (RISE). RISEBench focuses on four key reasoning types: Temporal, Causal, Spatial, and Logical Reasoning. We curate high-quality test cases for each category and propose an evaluation framework that assesses Instruction Reasoning, Appearance Consistency, and Visual Plausibility with both human judges and an LMM-as-a-judge approach. Our experiments reveal that while GPT-4o-Native significantly outperforms other open-source and proprietary models, even this state-of-the-art system struggles with logical reasoning tasks, highlighting an area that remains underexplored. As an initial effort, RISEBench aims to provide foundational insights into reasoning-aware visual editing and to catalyze future research. Though still in its early stages, we are committed to continuously expanding and refining the benchmark to support more comprehensive, reliable, and scalable evaluations of next-generation multimodal systems. Our code and data will be released at https://github.com/PhoenixZ810/RISEBench.
Improving Diffusion Models for Scene Text Editing with Dual Encoders
Scene text editing is a challenging task that involves modifying or inserting specified texts in an image while maintaining its natural and realistic appearance. Most previous approaches to this task rely on style-transfer models that crop out text regions and feed them into image transfer models, such as GANs. However, these methods are limited in their ability to change text style and are unable to insert texts into images. Recent advances in diffusion models have shown promise in overcoming these limitations with text-conditional image editing. However, our empirical analysis reveals that state-of-the-art diffusion models struggle with rendering correct text and controlling text style. To address these problems, we propose DIFFSTE to improve pre-trained diffusion models with a dual encoder design, which includes a character encoder for better text legibility and an instruction encoder for better style control. An instruction tuning framework is introduced to train our model to learn the mapping from the text instruction to the corresponding image with either the specified style or the style of the surrounding texts in the background. Such a training method further brings our method the zero-shot generalization ability to the following three scenarios: generating text with unseen font variation, e.g., italic and bold, mixing different fonts to construct a new font, and using more relaxed forms of natural language as the instructions to guide the generation task. We evaluate our approach on five datasets and demonstrate its superior performance in terms of text correctness, image naturalness, and style controllability. Our code is publicly available. https://github.com/UCSB-NLP-Chang/DiffSTE
Step1X-Edit: A Practical Framework for General Image Editing
In recent years, image editing models have witnessed remarkable and rapid development. The recent unveiling of cutting-edge multimodal models such as GPT-4o and Gemini2 Flash has introduced highly promising image editing capabilities. These models demonstrate an impressive aptitude for fulfilling a vast majority of user-driven editing requirements, marking a significant advancement in the field of image manipulation. However, there is still a large gap between the open-source algorithm with these closed-source models. Thus, in this paper, we aim to release a state-of-the-art image editing model, called Step1X-Edit, which can provide comparable performance against the closed-source models like GPT-4o and Gemini2 Flash. More specifically, we adopt the Multimodal LLM to process the reference image and the user's editing instruction. A latent embedding has been extracted and integrated with a diffusion image decoder to obtain the target image. To train the model, we build a data generation pipeline to produce a high-quality dataset. For evaluation, we develop the GEdit-Bench, a novel benchmark rooted in real-world user instructions. Experimental results on GEdit-Bench demonstrate that Step1X-Edit outperforms existing open-source baselines by a substantial margin and approaches the performance of leading proprietary models, thereby making significant contributions to the field of image editing.
VectorEdits: A Dataset and Benchmark for Instruction-Based Editing of Vector Graphics
We introduce a large-scale dataset for instruction-guided vector image editing, consisting of over 270,000 pairs of SVG images paired with natural language edit instructions. Our dataset enables training and evaluation of models that modify vector graphics based on textual commands. We describe the data collection process, including image pairing via CLIP similarity and instruction generation with vision-language models. Initial experiments with state-of-the-art large language models reveal that current methods struggle to produce accurate and valid edits, underscoring the challenge of this task. To foster research in natural language-driven vector graphic generation and editing, we make our resources created within this work publicly available.
PixWizard: Versatile Image-to-Image Visual Assistant with Open-Language Instructions
This paper presents a versatile image-to-image visual assistant, PixWizard, designed for image generation, manipulation, and translation based on free-from language instructions. To this end, we tackle a variety of vision tasks into a unified image-text-to-image generation framework and curate an Omni Pixel-to-Pixel Instruction-Tuning Dataset. By constructing detailed instruction templates in natural language, we comprehensively include a large set of diverse vision tasks such as text-to-image generation, image restoration, image grounding, dense image prediction, image editing, controllable generation, inpainting/outpainting, and more. Furthermore, we adopt Diffusion Transformers (DiT) as our foundation model and extend its capabilities with a flexible any resolution mechanism, enabling the model to dynamically process images based on the aspect ratio of the input, closely aligning with human perceptual processes. The model also incorporates structure-aware and semantic-aware guidance to facilitate effective fusion of information from the input image. Our experiments demonstrate that PixWizard not only shows impressive generative and understanding abilities for images with diverse resolutions but also exhibits promising generalization capabilities with unseen tasks and human instructions. The code and related resources are available at https://github.com/AFeng-x/PixWizard
ChatGarment: Garment Estimation, Generation and Editing via Large Language Models
We introduce ChatGarment, a novel approach that leverages large vision-language models (VLMs) to automate the estimation, generation, and editing of 3D garments from images or text descriptions. Unlike previous methods that struggle in real-world scenarios or lack interactive editing capabilities, ChatGarment can estimate sewing patterns from in-the-wild images or sketches, generate them from text descriptions, and edit garments based on user instructions, all within an interactive dialogue. These sewing patterns can then be draped into 3D garments, which are easily animatable and simulatable. This is achieved by finetuning a VLM to directly generate a JSON file that includes both textual descriptions of garment types and styles, as well as continuous numerical attributes. This JSON file is then used to create sewing patterns through a programming parametric model. To support this, we refine the existing programming model, GarmentCode, by expanding its garment type coverage and simplifying its structure for efficient VLM fine-tuning. Additionally, we construct a large-scale dataset of image-to-sewing-pattern and text-to-sewing-pattern pairs through an automated data pipeline. Extensive evaluations demonstrate ChatGarment's ability to accurately reconstruct, generate, and edit garments from multimodal inputs, highlighting its potential to revolutionize workflows in fashion and gaming applications. Code and data will be available at https://chatgarment.github.io/.
ThinkSound: Chain-of-Thought Reasoning in Multimodal Large Language Models for Audio Generation and Editing
While end-to-end video-to-audio generation has greatly improved, producing high-fidelity audio that authentically captures the nuances of visual content remains challenging. Like professionals in the creative industries, such generation requires sophisticated reasoning about items such as visual dynamics, acoustic environments, and temporal relationships. We present ThinkSound, a novel framework that leverages Chain-of-Thought (CoT) reasoning to enable stepwise, interactive audio generation and editing for videos. Our approach decomposes the process into three complementary stages: foundational foley generation that creates semantically coherent soundscapes, interactive object-centric refinement through precise user interactions, and targeted editing guided by natural language instructions. At each stage, a multimodal large language model generates contextually aligned CoT reasoning that guides a unified audio foundation model. Furthermore, we introduce AudioCoT, a comprehensive dataset with structured reasoning annotations that establishes connections between visual content, textual descriptions, and sound synthesis. Experiments demonstrate that ThinkSound achieves state-of-the-art performance in video-to-audio generation across both audio metrics and CoT metrics and excels in out-of-distribution Movie Gen Audio benchmark. The demo page is available at https://ThinkSound-Project.github.io.
Cityscape-Adverse: Benchmarking Robustness of Semantic Segmentation with Realistic Scene Modifications via Diffusion-Based Image Editing
Recent advancements in generative AI, particularly diffusion-based image editing, have enabled the transformation of images into highly realistic scenes using only text instructions. This technology offers significant potential for generating diverse synthetic datasets to evaluate model robustness. In this paper, we introduce Cityscape-Adverse, a benchmark that employs diffusion-based image editing to simulate eight adverse conditions, including variations in weather, lighting, and seasons, while preserving the original semantic labels. We evaluate the reliability of diffusion-based models in generating realistic scene modifications and assess the performance of state-of-the-art CNN and Transformer-based semantic segmentation models under these challenging conditions. Additionally, we analyze which modifications have the greatest impact on model performance and explore how training on synthetic datasets can improve robustness in real-world adverse scenarios. Our results demonstrate that all tested models, particularly CNN-based architectures, experienced significant performance degradation under extreme conditions, while Transformer-based models exhibited greater resilience. We verify that models trained on Cityscape-Adverse show significantly enhanced resilience when applied to unseen domains. Code and datasets will be released at https://github.com/naufalso/cityscape-adverse.
Vitron: A Unified Pixel-level Vision LLM for Understanding, Generating, Segmenting, Editing
Recent developments of vision large language models (LLMs) have seen remarkable progress, yet still encounter challenges towards multimodal generalists, such as coarse-grained instance-level understanding, lack of unified support for both images and videos, and insufficient coverage across various vision tasks. In this paper, we present VITRON, a universal pixel-level vision LLM designed for comprehensive understanding, generating, segmenting, and editing of both static images and dynamic videos. Building on top of an LLM backbone, VITRON incorporates encoders for images, videos, and pixel-level regional visuals within its frontend modules, while employing state-of-the-art visual specialists as its backend, via which VITRON supports a spectrum of vision end tasks, spanning visual comprehension to visual generation, from low level to high level. To ensure an effective and precise message passing from LLM to backend modules for function invocation, we propose a novel hybrid method by simultaneously integrating discrete textual instructions and continuous signal embeddings. Further, we design various pixel-level spatiotemporal vision-language alignment learning for VITRON to reach the best fine-grained visual capability. Finally, a cross-task synergy module is advised to learn to maximize the task-invariant fine-grained visual features, enhancing the synergy between different visual tasks. Demonstrated over 12 visual tasks and evaluated across 22 datasets, VITRON showcases its extensive capabilities in the four main vision task clusters. Overall, this work illuminates the great potential of developing a more unified multimodal generalist. Project homepage: https://vitron-llm.github.io/
Add-it: Training-Free Object Insertion in Images With Pretrained Diffusion Models
Adding Object into images based on text instructions is a challenging task in semantic image editing, requiring a balance between preserving the original scene and seamlessly integrating the new object in a fitting location. Despite extensive efforts, existing models often struggle with this balance, particularly with finding a natural location for adding an object in complex scenes. We introduce Add-it, a training-free approach that extends diffusion models' attention mechanisms to incorporate information from three key sources: the scene image, the text prompt, and the generated image itself. Our weighted extended-attention mechanism maintains structural consistency and fine details while ensuring natural object placement. Without task-specific fine-tuning, Add-it achieves state-of-the-art results on both real and generated image insertion benchmarks, including our newly constructed "Additing Affordance Benchmark" for evaluating object placement plausibility, outperforming supervised methods. Human evaluations show that Add-it is preferred in over 80% of cases, and it also demonstrates improvements in various automated metrics.
Can Large Language Models Help Developers with Robotic Finite State Machine Modification?
Finite state machines (FSMs) are widely used to manage robot behavior logic, particularly in real-world applications that require a high degree of reliability and structure. However, traditional manual FSM design and modification processes can be time-consuming and error-prone. We propose that large language models (LLMs) can assist developers in editing FSM code for real-world robotic use cases. LLMs, with their ability to use context and process natural language, offer a solution for FSM modification with high correctness, allowing developers to update complex control logic through natural language instructions. Our approach leverages few-shot prompting and language-guided code generation to reduce the amount of time it takes to edit an FSM. To validate this approach, we evaluate it on a real-world robotics dataset, demonstrating its effectiveness in practical scenarios.
Fine-Tuning InstructPix2Pix for Advanced Image Colorization
This paper presents a novel approach to human image colorization by fine-tuning the InstructPix2Pix model, which integrates a language model (GPT-3) with a text-to-image model (Stable Diffusion). Despite the original InstructPix2Pix model's proficiency in editing images based on textual instructions, it exhibits limitations in the focused domain of colorization. To address this, we fine-tuned the model using the IMDB-WIKI dataset, pairing black-and-white images with a diverse set of colorization prompts generated by ChatGPT. This paper contributes by (1) applying fine-tuning techniques to stable diffusion models specifically for colorization tasks, and (2) employing generative models to create varied conditioning prompts. After finetuning, our model outperforms the original InstructPix2Pix model on multiple metrics quantitatively, and we produce more realistically colored images qualitatively. The code for this project is provided on the GitHub Repository https://github.com/AllenAnZifeng/DeepLearning282.
Robust Learning of Diverse Code Edits
Software engineering activities frequently involve edits to existing code. However, contemporary code language models (LMs) lack the ability to handle diverse types of code-edit requirements. In this work, we attempt to overcome this shortcoming through (1) a novel synthetic data generation pipeline and (2) a robust model adaptation algorithm. Starting with seed code examples and diverse editing criteria, our pipeline generates high-quality samples comprising original and modified code, along with natural language instructions in different styles and verbosity. Today's code LMs come bundled with strong abilities, such as code generation and instruction following, which should not be lost due to fine-tuning. To ensure this, we propose a novel adaptation algorithm, SeleKT, that (a) leverages a dense gradient-based step to identify the weights that are most important for code editing, and (b) does a sparse projection onto the base model to avoid overfitting. Using our approach, we obtain a new series of models NextCoder (adapted from QwenCoder-2.5) that achieves strong results on five code-editing benchmarks, outperforming comparable size models and even several larger ones. We show the generality of our approach on two model families (DeepSeekCoder and QwenCoder), compare against other fine-tuning approaches, and demonstrate robustness by showing retention of code generation abilities post adaptation.
Can Pre-Trained Text-to-Image Models Generate Visual Goals for Reinforcement Learning?
Pre-trained text-to-image generative models can produce diverse, semantically rich, and realistic images from natural language descriptions. Compared with language, images usually convey information with more details and less ambiguity. In this study, we propose Learning from the Void (LfVoid), a method that leverages the power of pre-trained text-to-image models and advanced image editing techniques to guide robot learning. Given natural language instructions, LfVoid can edit the original observations to obtain goal images, such as "wiping" a stain off a table. Subsequently, LfVoid trains an ensembled goal discriminator on the generated image to provide reward signals for a reinforcement learning agent, guiding it to achieve the goal. The ability of LfVoid to learn with zero in-domain training on expert demonstrations or true goal observations (the void) is attributed to the utilization of knowledge from web-scale generative models. We evaluate LfVoid across three simulated tasks and validate its feasibility in the corresponding real-world scenarios. In addition, we offer insights into the key considerations for the effective integration of visual generative models into robot learning workflows. We posit that our work represents an initial step towards the broader application of pre-trained visual generative models in the robotics field. Our project page: https://lfvoid-rl.github.io/.
XATU: A Fine-grained Instruction-based Benchmark for Explainable Text Updates
Text editing is a crucial task that involves modifying text to better align with user intents. However, existing text editing benchmark datasets have limitations in providing only coarse-grained instructions. Consequently, although the edited output may seem reasonable, it often deviates from the intended changes outlined in the gold reference, resulting in low evaluation scores. To comprehensively investigate the text editing capabilities of large language models, this paper introduces XATU, the first benchmark specifically designed for fine-grained instruction-based explainable text editing. XATU covers a wide range of topics and text types, incorporating lexical, syntactic, semantic, and knowledge-intensive edits. To enhance interpretability, we leverage high-quality data sources and human annotation, resulting in a benchmark that includes fine-grained instructions and gold-standard edit explanations. By evaluating existing open and closed large language models against our benchmark, we demonstrate the effectiveness of instruction tuning and the impact of underlying architecture across various editing tasks. Furthermore, extensive experimentation reveals the significant role of explanations in fine-tuning language models for text editing tasks. The benchmark will be open-sourced to support reproduction and facilitate future research.
Self-correcting LLM-controlled Diffusion Models
Text-to-image generation has witnessed significant progress with the advent of diffusion models. Despite the ability to generate photorealistic images, current text-to-image diffusion models still often struggle to accurately interpret and follow complex input text prompts. In contrast to existing models that aim to generate images only with their best effort, we introduce Self-correcting LLM-controlled Diffusion (SLD). SLD is a framework that generates an image from the input prompt, assesses its alignment with the prompt, and performs self-corrections on the inaccuracies in the generated image. Steered by an LLM controller, SLD turns text-to-image generation into an iterative closed-loop process, ensuring correctness in the resulting image. SLD is not only training-free but can also be seamlessly integrated with diffusion models behind API access, such as DALL-E 3, to further boost the performance of state-of-the-art diffusion models. Experimental results show that our approach can rectify a majority of incorrect generations, particularly in generative numeracy, attribute binding, and spatial relationships. Furthermore, by simply adjusting the instructions to the LLM, SLD can perform image editing tasks, bridging the gap between text-to-image generation and image editing pipelines. We will make our code available for future research and applications.
Have we unified image generation and understanding yet? An empirical study of GPT-4o's image generation ability
OpenAI's multimodal GPT-4o has demonstrated remarkable capabilities in image generation and editing, yet its ability to achieve world knowledge-informed semantic synthesis--seamlessly integrating domain knowledge, contextual reasoning, and instruction adherence--remains unproven. In this study, we systematically evaluate these capabilities across three critical dimensions: (1) Global Instruction Adherence, (2) Fine-Grained Editing Precision, and (3) Post-Generation Reasoning. While existing benchmarks highlight GPT-4o's strong capabilities in image generation and editing, our evaluation reveals GPT-4o's persistent limitations: the model frequently defaults to literal interpretations of instructions, inconsistently applies knowledge constraints, and struggles with conditional reasoning tasks. These findings challenge prevailing assumptions about GPT-4o's unified understanding and generation capabilities, exposing significant gaps in its dynamic knowledge integration. Our study calls for the development of more robust benchmarks and training strategies that go beyond surface-level alignment, emphasizing context-aware and reasoning-grounded multimodal generation.
CoMA: Compositional Human Motion Generation with Multi-modal Agents
3D human motion generation has seen substantial advancement in recent years. While state-of-the-art approaches have improved performance significantly, they still struggle with complex and detailed motions unseen in training data, largely due to the scarcity of motion datasets and the prohibitive cost of generating new training examples. To address these challenges, we introduce CoMA, an agent-based solution for complex human motion generation, editing, and comprehension. CoMA leverages multiple collaborative agents powered by large language and vision models, alongside a mask transformer-based motion generator featuring body part-specific encoders and codebooks for fine-grained control. Our framework enables generation of both short and long motion sequences with detailed instructions, text-guided motion editing, and self-correction for improved quality. Evaluations on the HumanML3D dataset demonstrate competitive performance against state-of-the-art methods. Additionally, we create a set of context-rich, compositional, and long text prompts, where user studies show our method significantly outperforms existing approaches.
PoseFix: Correcting 3D Human Poses with Natural Language
Automatically producing instructions to modify one's posture could open the door to endless applications, such as personalized coaching and in-home physical therapy. Tackling the reverse problem (i.e., refining a 3D pose based on some natural language feedback) could help for assisted 3D character animation or robot teaching, for instance. Although a few recent works explore the connections between natural language and 3D human pose, none focus on describing 3D body pose differences. In this paper, we tackle the problem of correcting 3D human poses with natural language. To this end, we introduce the PoseFix dataset, which consists of several thousand paired 3D poses and their corresponding text feedback, that describe how the source pose needs to be modified to obtain the target pose. We demonstrate the potential of this dataset on two tasks: (1) text-based pose editing, that aims at generating corrected 3D body poses given a query pose and a text modifier; and (2) correctional text generation, where instructions are generated based on the differences between two body poses.
MMIG-Bench: Towards Comprehensive and Explainable Evaluation of Multi-Modal Image Generation Models
Recent multimodal image generators such as GPT-4o, Gemini 2.0 Flash, and Gemini 2.5 Pro excel at following complex instructions, editing images and maintaining concept consistency. However, they are still evaluated by disjoint toolkits: text-to-image (T2I) benchmarks that lacks multi-modal conditioning, and customized image generation benchmarks that overlook compositional semantics and common knowledge. We propose MMIG-Bench, a comprehensive Multi-Modal Image Generation Benchmark that unifies these tasks by pairing 4,850 richly annotated text prompts with 1,750 multi-view reference images across 380 subjects, spanning humans, animals, objects, and artistic styles. MMIG-Bench is equipped with a three-level evaluation framework: (1) low-level metrics for visual artifacts and identity preservation of objects; (2) novel Aspect Matching Score (AMS): a VQA-based mid-level metric that delivers fine-grained prompt-image alignment and shows strong correlation with human judgments; and (3) high-level metrics for aesthetics and human preference. Using MMIG-Bench, we benchmark 17 state-of-the-art models, including Gemini 2.5 Pro, FLUX, DreamBooth, and IP-Adapter, and validate our metrics with 32k human ratings, yielding in-depth insights into architecture and data design. We will release the dataset and evaluation code to foster rigorous, unified evaluation and accelerate future innovations in multi-modal image generation.
Automatic Prompt Optimization with "Gradient Descent" and Beam Search
Large Language Models (LLMs) have shown impressive performance as general purpose agents, but their abilities remain highly dependent on prompts which are hand written with onerous trial-and-error effort. We propose a simple and nonparametric solution to this problem, Automatic Prompt Optimization (APO), which is inspired by numerical gradient descent to automatically improve prompts, assuming access to training data and an LLM API. The algorithm uses minibatches of data to form natural language ``gradients'' that criticize the current prompt. The gradients are then ``propagated'' into the prompt by editing the prompt in the opposite semantic direction of the gradient. These gradient descent steps are guided by a beam search and bandit selection procedure which significantly improves algorithmic efficiency. Preliminary results across three benchmark NLP tasks and the novel problem of LLM jailbreak detection suggest that Automatic Prompt Optimization can outperform prior prompt editing techniques and improve an initial prompt's performance by up to 31\%, by using data to rewrite vague task descriptions into more precise annotation instructions.
OBJECT 3DIT: Language-guided 3D-aware Image Editing
Existing image editing tools, while powerful, typically disregard the underlying 3D geometry from which the image is projected. As a result, edits made using these tools may become detached from the geometry and lighting conditions that are at the foundation of the image formation process. In this work, we formulate the newt ask of language-guided 3D-aware editing, where objects in an image should be edited according to a language instruction in context of the underlying 3D scene. To promote progress towards this goal, we release OBJECT: a dataset consisting of 400K editing examples created from procedurally generated 3D scenes. Each example consists of an input image, editing instruction in language, and the edited image. We also introduce 3DIT : single and multi-task models for four editing tasks. Our models show impressive abilities to understand the 3D composition of entire scenes, factoring in surrounding objects, surfaces, lighting conditions, shadows, and physically-plausible object configurations. Surprisingly, training on only synthetic scenes from OBJECT, editing capabilities of 3DIT generalize to real-world images.
HeadSculpt: Crafting 3D Head Avatars with Text
Recently, text-guided 3D generative methods have made remarkable advancements in producing high-quality textures and geometry, capitalizing on the proliferation of large vision-language and image diffusion models. However, existing methods still struggle to create high-fidelity 3D head avatars in two aspects: (1) They rely mostly on a pre-trained text-to-image diffusion model whilst missing the necessary 3D awareness and head priors. This makes them prone to inconsistency and geometric distortions in the generated avatars. (2) They fall short in fine-grained editing. This is primarily due to the inherited limitations from the pre-trained 2D image diffusion models, which become more pronounced when it comes to 3D head avatars. In this work, we address these challenges by introducing a versatile coarse-to-fine pipeline dubbed HeadSculpt for crafting (i.e., generating and editing) 3D head avatars from textual prompts. Specifically, we first equip the diffusion model with 3D awareness by leveraging landmark-based control and a learned textual embedding representing the back view appearance of heads, enabling 3D-consistent head avatar generations. We further propose a novel identity-aware editing score distillation strategy to optimize a textured mesh with a high-resolution differentiable rendering technique. This enables identity preservation while following the editing instruction. We showcase HeadSculpt's superior fidelity and editing capabilities through comprehensive experiments and comparisons with existing methods.
Consistent Video-to-Video Transfer Using Synthetic Dataset
We introduce a novel and efficient approach for text-based video-to-video editing that eliminates the need for resource-intensive per-video-per-model finetuning. At the core of our approach is a synthetic paired video dataset tailored for video-to-video transfer tasks. Inspired by Instruct Pix2Pix's image transfer via editing instruction, we adapt this paradigm to the video domain. Extending the Prompt-to-Prompt to videos, we efficiently generate paired samples, each with an input video and its edited counterpart. Alongside this, we introduce the Long Video Sampling Correction during sampling, ensuring consistent long videos across batches. Our method surpasses current methods like Tune-A-Video, heralding substantial progress in text-based video-to-video editing and suggesting exciting avenues for further exploration and deployment.
EditEval: An Instruction-Based Benchmark for Text Improvements
Evaluation of text generation to date has primarily focused on content created sequentially, rather than improvements on a piece of text. Writing, however, is naturally an iterative and incremental process that requires expertise in different modular skills such as fixing outdated information or making the style more consistent. Even so, comprehensive evaluation of a model's capacity to perform these skills and the ability to edit remains sparse. This work presents EditEval: An instruction-based, benchmark and evaluation suite that leverages high-quality existing and new datasets for automatic evaluation of editing capabilities such as making text more cohesive and paraphrasing. We evaluate several pre-trained models, which shows that InstructGPT and PEER perform the best, but that most baselines fall below the supervised SOTA, particularly when neutralizing and updating information. Our analysis also shows that commonly used metrics for editing tasks do not always correlate well, and that optimization for prompts with the highest performance does not necessarily entail the strongest robustness to different models. Through the release of this benchmark and a publicly available leaderboard challenge, we hope to unlock future research in developing models capable of iterative and more controllable editing.
ParaRev: Building a dataset for Scientific Paragraph Revision annotated with revision instruction
Revision is a crucial step in scientific writing, where authors refine their work to improve clarity, structure, and academic quality. Existing approaches to automated writing assistance often focus on sentence-level revisions, which fail to capture the broader context needed for effective modification. In this paper, we explore the impact of shifting from sentence-level to paragraph-level scope for the task of scientific text revision. The paragraph level definition of the task allows for more meaningful changes, and is guided by detailed revision instructions rather than general ones. To support this task, we introduce ParaRev, the first dataset of revised scientific paragraphs with an evaluation subset manually annotated with revision instructions. Our experiments demonstrate that using detailed instructions significantly improves the quality of automated revisions compared to general approaches, no matter the model or the metric considered.
Edisum: Summarizing and Explaining Wikipedia Edits at Scale
An edit summary is a succinct comment written by a Wikipedia editor explaining the nature of, and reasons for, an edit to a Wikipedia page. Edit summaries are crucial for maintaining the encyclopedia: they are the first thing seen by content moderators and help them decide whether to accept or reject an edit. Additionally, edit summaries constitute a valuable data source for researchers. Unfortunately, as we show, for many edits, summaries are either missing or incomplete. To overcome this problem and help editors write useful edit summaries, we propose a model for recommending edit summaries generated by a language model trained to produce good edit summaries given the representation of an edit diff. This is a challenging task for multiple reasons, including mixed-quality training data, the need to understand not only what was changed in the article but also why it was changed, and efficiency requirements imposed by the scale of Wikipedia. We address these challenges by curating a mix of human and synthetically generated training data and fine-tuning a generative language model sufficiently small to be used on Wikipedia at scale. Our model performs on par with human editors. Commercial large language models are able to solve this task better than human editors, but would be too expensive to run on Wikipedia at scale. More broadly, this paper showcases how language modeling technology can be used to support humans in maintaining one of the largest and most visible projects on the Web.
POEM: Precise Object-level Editing via MLLM control
Diffusion models have significantly improved text-to-image generation, producing high-quality, realistic images from textual descriptions. Beyond generation, object-level image editing remains a challenging problem, requiring precise modifications while preserving visual coherence. Existing text-based instructional editing methods struggle with localized shape and layout transformations, often introducing unintended global changes. Image interaction-based approaches offer better accuracy but require manual human effort to provide precise guidance. To reduce this manual effort while maintaining a high image editing accuracy, in this paper, we propose POEM, a framework for Precise Object-level Editing using Multimodal Large Language Models (MLLMs). POEM leverages MLLMs to analyze instructional prompts and generate precise object masks before and after transformation, enabling fine-grained control without extensive user input. This structured reasoning stage guides the diffusion-based editing process, ensuring accurate object localization and transformation. To evaluate our approach, we introduce VOCEdits, a benchmark dataset based on PASCAL VOC 2012, augmented with instructional edit prompts, ground-truth transformations, and precise object masks. Experimental results show that POEM outperforms existing text-based image editing approaches in precision and reliability while reducing manual effort compared to interaction-based methods.
BrushEdit: All-In-One Image Inpainting and Editing
Image editing has advanced significantly with the development of diffusion models using both inversion-based and instruction-based methods. However, current inversion-based approaches struggle with big modifications (e.g., adding or removing objects) due to the structured nature of inversion noise, which hinders substantial changes. Meanwhile, instruction-based methods often constrain users to black-box operations, limiting direct interaction for specifying editing regions and intensity. To address these limitations, we propose BrushEdit, a novel inpainting-based instruction-guided image editing paradigm, which leverages multimodal large language models (MLLMs) and image inpainting models to enable autonomous, user-friendly, and interactive free-form instruction editing. Specifically, we devise a system enabling free-form instruction editing by integrating MLLMs and a dual-branch image inpainting model in an agent-cooperative framework to perform editing category classification, main object identification, mask acquisition, and editing area inpainting. Extensive experiments show that our framework effectively combines MLLMs and inpainting models, achieving superior performance across seven metrics including mask region preservation and editing effect coherence.
RewriteLM: An Instruction-Tuned Large Language Model for Text Rewriting
Large Language Models (LLMs) have demonstrated impressive zero-shot capabilities in long-form text generation tasks expressed through natural language instructions. However, user expectations for long-form text rewriting is high, and unintended rewrites (''hallucinations'') produced by the model can negatively impact its overall performance. Existing evaluation benchmarks primarily focus on limited rewriting styles and sentence-level rewriting rather than long-form open-ended rewriting.We introduce OpenRewriteEval, a novel benchmark that covers a wide variety of rewriting types expressed through natural language instructions. It is specifically designed to facilitate the evaluation of open-ended rewriting of long-form texts. In addition, we propose a strong baseline model, RewriteLM, an instruction-tuned large language model for long-form text rewriting. We develop new strategies that facilitate the generation of diverse instructions and preference data with minimal human intervention. We conduct empirical experiments and demonstrate that our model outperforms the current state-of-the-art LLMs in text rewriting. Specifically, it excels in preserving the essential content and meaning of the source text, minimizing the generation of ''hallucinated'' content, while showcasing the ability to generate rewrites with diverse wording and structures.
PatentEdits: Framing Patent Novelty as Textual Entailment
A patent must be deemed novel and non-obvious in order to be granted by the US Patent Office (USPTO). If it is not, a US patent examiner will cite the prior work, or prior art, that invalidates the novelty and issue a non-final rejection. Predicting what claims of the invention should change given the prior art is an essential and crucial step in securing invention rights, yet has not been studied before as a learnable task. In this work we introduce the PatentEdits dataset, which contains 105K examples of successful revisions that overcome objections to novelty. We design algorithms to label edits sentence by sentence, then establish how well these edits can be predicted with large language models (LLMs). We demonstrate that evaluating textual entailment between cited references and draft sentences is especially effective in predicting which inventive claims remained unchanged or are novel in relation to prior art.
NewsEdits: A News Article Revision Dataset and a Document-Level Reasoning Challenge
News article revision histories provide clues to narrative and factual evolution in news articles. To facilitate analysis of this evolution, we present the first publicly available dataset of news revision histories, NewsEdits. Our dataset is large-scale and multilingual; it contains 1.2 million articles with 4.6 million versions from over 22 English- and French-language newspaper sources based in three countries, spanning 15 years of coverage (2006-2021). We define article-level edit actions: Addition, Deletion, Edit and Refactor, and develop a high-accuracy extraction algorithm to identify these actions. To underscore the factual nature of many edit actions, we conduct analyses showing that added and deleted sentences are more likely to contain updating events, main content and quotes than unchanged sentences. Finally, to explore whether edit actions are predictable, we introduce three novel tasks aimed at predicting actions performed during version updates. We show that these tasks are possible for expert humans but are challenging for large NLP models. We hope this can spur research in narrative framing and help provide predictive tools for journalists chasing breaking news.
Suri: Multi-constraint Instruction Following for Long-form Text Generation
Existing research on instruction following largely focuses on tasks with simple instructions and short responses. In this work, we explore multi-constraint instruction following for generating long-form text. We create Suri, a dataset with 20K human-written long-form texts paired with LLM-generated backtranslated instructions that contain multiple complex constraints. Because of prohibitive challenges associated with collecting human preference judgments on long-form texts, preference-tuning algorithms such as DPO are infeasible in our setting; thus, we propose Instructional ORPO (I-ORPO), an alignment method based on the ORPO algorithm. Instead of receiving negative feedback from dispreferred responses, I-ORPO obtains negative feedback from synthetically corrupted instructions generated by an LLM. Using Suri, we perform supervised and I-ORPO fine-tuning on Mistral-7b-Instruct-v0.2. The resulting models, Suri-SFT and Suri-I-ORPO, generate significantly longer texts (~5K tokens) than base models without significant quality deterioration. Our human evaluation shows that while both SFT and I-ORPO models satisfy most constraints, Suri-I-ORPO generations are generally preferred for their coherent and informative incorporation of the constraints. We release our code at https://github.com/chtmp223/suri.
AIR: Complex Instruction Generation via Automatic Iterative Refinement
With the development of large language models, their ability to follow simple instructions has significantly improved. However, adhering to complex instructions remains a major challenge. Current approaches to generating complex instructions are often irrelevant to the current instruction requirements or suffer from limited scalability and diversity. Moreover, methods such as back-translation, while effective for simple instruction generation, fail to leverage the rich contents and structures in large web corpora. In this paper, we propose a novel automatic iterative refinement framework to generate complex instructions with constraints, which not only better reflects the requirements of real scenarios but also significantly enhances LLMs' ability to follow complex instructions. The AIR framework consists of two stages: (1)Generate an initial instruction from a document; (2)Iteratively refine instructions with LLM-as-judge guidance by comparing the model's output with the document to incorporate valuable constraints. Finally, we construct the AIR-10K dataset with 10K complex instructions and demonstrate that instructions generated with our approach significantly improve the model's ability to follow complex instructions, outperforming existing methods for instruction generation.
Editing Large Language Models: Problems, Methods, and Opportunities
Despite the ability to train capable LLMs, the methodology for maintaining their relevancy and rectifying errors remains elusive. To this end, the past few years have witnessed a surge in techniques for editing LLMs, the objective of which is to efficiently alter the behavior of LLMs within a specific domain without negatively impacting performance across other inputs. This paper embarks on a deep exploration of the problems, methods, and opportunities related to model editing for LLMs. In particular, we provide an exhaustive overview of the task definition and challenges associated with model editing, along with an in-depth empirical analysis of the most progressive methods currently at our disposal. We also build a new benchmark dataset to facilitate a more robust evaluation and pinpoint enduring issues intrinsic to existing techniques. Our objective is to provide valuable insights into the effectiveness and feasibility of each editing technique, thereby assisting the community in making informed decisions on the selection of the most appropriate method for a specific task or context. Code and datasets are available at https://github.com/zjunlp/EasyEdit.
SEED-Data-Edit Technical Report: A Hybrid Dataset for Instructional Image Editing
In this technical report, we introduce SEED-Data-Edit: a unique hybrid dataset for instruction-guided image editing, which aims to facilitate image manipulation using open-form language. SEED-Data-Edit is composed of three distinct types of data: (1) High-quality editing data produced by an automated pipeline, ensuring a substantial volume of diverse image editing pairs. (2) Real-world scenario data collected from the internet, which captures the intricacies of user intentions for promoting the practical application of image editing in the real world. (3) High-precision multi-turn editing data annotated by humans, which involves multiple rounds of edits for simulating iterative editing processes. The combination of these diverse data sources makes SEED-Data-Edit a comprehensive and versatile dataset for training language-guided image editing model. We fine-tune a pretrained Multimodal Large Language Model (MLLM) that unifies comprehension and generation with SEED-Data-Edit. The instruction tuned model demonstrates promising results, indicating the potential and effectiveness of SEED-Data-Edit in advancing the field of instructional image editing. The datasets are released in https://huggingface.co/datasets/AILab-CVC/SEED-Data-Edit.
Should We Really Edit Language Models? On the Evaluation of Edited Language Models
Model editing has become an increasingly popular alternative for efficiently updating knowledge within language models. Current methods mainly focus on reliability, generalization, and locality, with many methods excelling across these criteria. Some recent works disclose the pitfalls of these editing methods such as knowledge distortion or conflict. However, the general abilities of post-edited language models remain unexplored. In this paper, we perform a comprehensive evaluation on various editing methods and different language models, and have following findings. (1) Existing editing methods lead to inevitable performance deterioration on general benchmarks, indicating that existing editing methods maintain the general abilities of the model within only a few dozen edits. When the number of edits is slightly large, the intrinsic knowledge structure of the model is disrupted or even completely damaged. (2) Instruction-tuned models are more robust to editing, showing less performance drop on general knowledge after editing. (3) Language model with large scale is more resistant to editing compared to small model. (4) The safety of the edited model, is significantly weakened, even for those safety-aligned models. Our findings indicate that current editing methods are only suitable for small-scale knowledge updates within language models, which motivates further research on more practical and reliable editing methods. The details of code and reproduction can be found in https://github.com/lqinfdim/EditingEvaluation.
Generating Illustrated Instructions
We introduce the new task of generating Illustrated Instructions, i.e., visual instructions customized to a user's needs. We identify desiderata unique to this task, and formalize it through a suite of automatic and human evaluation metrics, designed to measure the validity, consistency, and efficacy of the generations. We combine the power of large language models (LLMs) together with strong text-to-image generation diffusion models to propose a simple approach called StackedDiffusion, which generates such illustrated instructions given text as input. The resulting model strongly outperforms baseline approaches and state-of-the-art multimodal LLMs; and in 30% of cases, users even prefer it to human-generated articles. Most notably, it enables various new and exciting applications far beyond what static articles on the web can provide, such as personalized instructions complete with intermediate steps and pictures in response to a user's individual situation.
From Real to Synthetic: Synthesizing Millions of Diversified and Complicated User Instructions with Attributed Grounding
The pursuit of diverse, complex, and large-scale instruction data is crucial for automatically aligning large language models (LLMs). While there are methods capable of generating synthetic instructions at scale, they either suffer from limited grounding sources, leading to a narrow distribution, or rely on trivial extensions that fail to produce meaningful trajectories in terms of complexity. In contrast, instructions that benefit efficient alignment are typically crafted with cognitive insights and grounded in real-world use cases. In this paper, we synthesize such instructions using attributed grounding, which involves 1) a top-down attribution process that grounds a selective set of real instructions to situated users, and 2) a bottom-up synthesis process that leverages web documents to first generate a situation, then a meaningful instruction. This framework allows us to harvest diverse and complex instructions at scale, utilizing the vast range of web documents. Specifically, we construct a dataset of 1 million instructions, called SynthQuestions, and demonstrate that models trained on it achieve leading performance on several common benchmarks, with improvements that continually scale with more web corpora. Data, models and codes will be available at https://github.com/Ignoramus0817/SynthQuestions.
StRE: Self Attentive Edit Quality Prediction in Wikipedia
Wikipedia can easily be justified as a behemoth, considering the sheer volume of content that is added or removed every minute to its several projects. This creates an immense scope, in the field of natural language processing towards developing automated tools for content moderation and review. In this paper we propose Self Attentive Revision Encoder (StRE) which leverages orthographic similarity of lexical units toward predicting the quality of new edits. In contrast to existing propositions which primarily employ features like page reputation, editor activity or rule based heuristics, we utilize the textual content of the edits which, we believe contains superior signatures of their quality. More specifically, we deploy deep encoders to generate representations of the edits from its text content, which we then leverage to infer quality. We further contribute a novel dataset containing 21M revisions across 32K Wikipedia pages and demonstrate that StRE outperforms existing methods by a significant margin at least 17% and at most 103%. Our pretrained model achieves such result after retraining on a set as small as 20% of the edits in a wikipage. This, to the best of our knowledge, is also the first attempt towards employing deep language models to the enormous domain of automated content moderation and review in Wikipedia.
WizardLM: Empowering Large Language Models to Follow Complex Instructions
Training large language models (LLM) with open-domain instruction following data brings colossal success. However, manually creating such instruction data is very time-consuming and labor-intensive. Moreover, humans may struggle to produce high-complexity instructions. In this paper, we show an avenue for creating large amounts of instruction data with varying levels of complexity using LLM instead of humans. Starting with an initial set of instructions, we use our proposed Evol-Instruct to rewrite them step by step into more complex instructions. Then, we mix all generated instruction data to fine-tune LLaMA. We call the resulting model WizardLM. Human evaluations on a complexity-balanced test bed show that instructions from Evol-Instruct are superior to human-created ones. By analyzing the human evaluation results of the high complexity part, we demonstrate that outputs from our WizardLM model are preferred to outputs from OpenAI ChatGPT. Even though WizardLM still lags behind ChatGPT in some aspects, our findings suggest that fine-tuning with AI-evolved instructions is a promising direction for enhancing large language models. Our codes and generated data are public at https://github.com/nlpxucan/WizardLM
Spelling Correction with Denoising Transformer
We present a novel method of performing spelling correction on short input strings, such as search queries or individual words. At its core lies a procedure for generating artificial typos which closely follow the error patterns manifested by humans. This procedure is used to train the production spelling correction model based on a transformer architecture. This model is currently served in the HubSpot product search. We show that our approach to typo generation is superior to the widespread practice of adding noise, which ignores human patterns. We also demonstrate how our approach may be extended to resource-scarce settings and train spelling correction models for Arabic, Greek, Russian, and Setswana languages, without using any labeled data.
Custom-Edit: Text-Guided Image Editing with Customized Diffusion Models
Text-to-image diffusion models can generate diverse, high-fidelity images based on user-provided text prompts. Recent research has extended these models to support text-guided image editing. While text guidance is an intuitive editing interface for users, it often fails to ensure the precise concept conveyed by users. To address this issue, we propose Custom-Edit, in which we (i) customize a diffusion model with a few reference images and then (ii) perform text-guided editing. Our key discovery is that customizing only language-relevant parameters with augmented prompts improves reference similarity significantly while maintaining source similarity. Moreover, we provide our recipe for each customization and editing process. We compare popular customization methods and validate our findings on two editing methods using various datasets.
Large Language Models Are Human-Level Prompt Engineers
By conditioning on natural language instructions, large language models (LLMs) have displayed impressive capabilities as general-purpose computers. However, task performance depends significantly on the quality of the prompt used to steer the model, and most effective prompts have been handcrafted by humans. Inspired by classical program synthesis and the human approach to prompt engineering, we propose Automatic Prompt Engineer (APE) for automatic instruction generation and selection. In our method, we treat the instruction as the "program," optimized by searching over a pool of instruction candidates proposed by an LLM in order to maximize a chosen score function. To evaluate the quality of the selected instruction, we evaluate the zero-shot performance of another LLM following the selected instruction. Experiments on 24 NLP tasks show that our automatically generated instructions outperform the prior LLM baseline by a large margin and achieve better or comparable performance to the instructions generated by human annotators on 19/24 tasks. We conduct extensive qualitative and quantitative analyses to explore the performance of APE. We show that APE-engineered prompts can be applied to steer models toward truthfulness and/or informativeness, as well as to improve few-shot learning performance by simply prepending them to standard in-context learning prompts. Please check out our webpage at https://sites.google.com/view/automatic-prompt-engineer.
DUnE: Dataset for Unified Editing
Even the most advanced language models remain susceptible to errors necessitating to modify these models without initiating a comprehensive retraining process. Model editing refers to the modification of a model's knowledge or representations in a manner that produces the desired outcomes. Prior research primarily centered around editing factual data e.g. "Messi plays for Inter Miami" confining the definition of an edit to a knowledge triplet i.e. (subject, object, relation). However, as the applications of language models expand, so do the diverse ways in which we wish to edit and refine their outputs. In this study, we broaden the scope of the editing problem to include an array of editing cases such as debiasing and rectifying reasoning errors and define an edit as any natural language expression that solicits a change in the model's outputs. We are introducing DUnE-an editing benchmark where edits are natural language sentences and propose that DUnE presents a challenging yet relevant task. To substantiate this claim, we conduct an extensive series of experiments testing various editing approaches to address DUnE, demonstrating their respective strengths and weaknesses. We show that retrieval-augmented language modeling can outperform specialized editing techniques and neither set of approaches has fully solved the generalized editing problem covered by our benchmark.
GUIDE: A Guideline-Guided Dataset for Instructional Video Comprehension
There are substantial instructional videos on the Internet, which provide us tutorials for completing various tasks. Existing instructional video datasets only focus on specific steps at the video level, lacking experiential guidelines at the task level, which can lead to beginners struggling to learn new tasks due to the lack of relevant experience. Moreover, the specific steps without guidelines are trivial and unsystematic, making it difficult to provide a clear tutorial. To address these problems, we present the GUIDE (Guideline-Guided) dataset, which contains 3.5K videos of 560 instructional tasks in 8 domains related to our daily life. Specifically, we annotate each instructional task with a guideline, representing a common pattern shared by all task-related videos. On this basis, we annotate systematic specific steps, including their associated guideline steps, specific step descriptions and timestamps. Our proposed benchmark consists of three sub-tasks to evaluate comprehension ability of models: (1) Step Captioning: models have to generate captions for specific steps from videos. (2) Guideline Summarization: models have to mine the common pattern in task-related videos and summarize a guideline from them. (3) Guideline-Guided Captioning: models have to generate captions for specific steps under the guide of guideline. We evaluate plenty of foundation models with GUIDE and perform in-depth analysis. Given the diversity and practicality of GUIDE, we believe that it can be used as a better benchmark for instructional video comprehension.
Improving Iterative Text Revision by Learning Where to Edit from Other Revision Tasks
Iterative text revision improves text quality by fixing grammatical errors, rephrasing for better readability or contextual appropriateness, or reorganizing sentence structures throughout a document. Most recent research has focused on understanding and classifying different types of edits in the iterative revision process from human-written text instead of building accurate and robust systems for iterative text revision. In this work, we aim to build an end-to-end text revision system that can iteratively generate helpful edits by explicitly detecting editable spans (where-to-edit) with their corresponding edit intents and then instructing a revision model to revise the detected edit spans. Leveraging datasets from other related text editing NLP tasks, combined with the specification of editable spans, leads our system to more accurately model the process of iterative text refinement, as evidenced by empirical results and human evaluations. Our system significantly outperforms previous baselines on our text revision tasks and other standard text revision tasks, including grammatical error correction, text simplification, sentence fusion, and style transfer. Through extensive qualitative and quantitative analysis, we make vital connections between edit intentions and writing quality, and better computational modeling of iterative text revisions.
Learning to Edit: Aligning LLMs with Knowledge Editing
Knowledge editing techniques, aiming to efficiently modify a minor proportion of knowledge in large language models (LLMs) without negatively impacting performance across other inputs, have garnered widespread attention. However, existing methods predominantly rely on memorizing the updated knowledge, impeding LLMs from effectively combining the new knowledge with their inherent knowledge when answering questions. To this end, we propose a Learning to Edit (LTE) framework, focusing on teaching LLMs to apply updated knowledge into input questions, inspired by the philosophy of "Teach a man to fish." LTE features a two-phase process: (i) the Alignment Phase, which fine-tunes LLMs on a meticulously curated parallel dataset to make reliable, in-scope edits while preserving out-of-scope information and linguistic proficiency; and (ii) the Inference Phase, which employs a retrieval-based mechanism for real-time and mass knowledge editing. By comparing our approach with seven advanced baselines across four popular knowledge editing benchmarks and two LLM architectures, we demonstrate LTE's superiority in knowledge editing performance, robustness in both batch and sequential editing, minimal interference on general tasks, and rapid editing speeds. The data and code are available at https://github.com/YJiangcm/LTE.
arXivEdits: Understanding the Human Revision Process in Scientific Writing
Scientific publications are the primary means to communicate research discoveries, where the writing quality is of crucial importance. However, prior work studying the human editing process in this domain mainly focused on the abstract or introduction sections, resulting in an incomplete picture. In this work, we provide a complete computational framework for studying text revision in scientific writing. We first introduce arXivEdits, a new annotated corpus of 751 full papers from arXiv with gold sentence alignment across their multiple versions of revision, as well as fine-grained span-level edits and their underlying intentions for 1,000 sentence pairs. It supports our data-driven analysis to unveil the common strategies practiced by researchers for revising their papers. To scale up the analysis, we also develop automatic methods to extract revision at document-, sentence-, and word-levels. A neural CRF sentence alignment model trained on our corpus achieves 93.8 F1, enabling the reliable matching of sentences between different versions. We formulate the edit extraction task as a span alignment problem, and our proposed method extracts more fine-grained and explainable edits, compared to the commonly used diff algorithm. An intention classifier trained on our dataset achieves 78.9 F1 on the fine-grained intent classification task. Our data and system are released at tiny.one/arxivedits.
INSTRUCTIR: A Benchmark for Instruction Following of Information Retrieval Models
Despite the critical need to align search targets with users' intention, retrievers often only prioritize query information without delving into the users' intended search context. Enhancing the capability of retrievers to understand intentions and preferences of users, akin to language model instructions, has the potential to yield more aligned search targets. Prior studies restrict the application of instructions in information retrieval to a task description format, neglecting the broader context of diverse and evolving search scenarios. Furthermore, the prevailing benchmarks utilized for evaluation lack explicit tailoring to assess instruction-following ability, thereby hindering progress in this field. In response to these limitations, we propose a novel benchmark,INSTRUCTIR, specifically designed to evaluate instruction-following ability in information retrieval tasks. Our approach focuses on user-aligned instructions tailored to each query instance, reflecting the diverse characteristics inherent in real-world search scenarios. Through experimental analysis, we observe that retrievers fine-tuned to follow task-style instructions, such as INSTRUCTOR, can underperform compared to their non-instruction-tuned counterparts. This underscores potential overfitting issues inherent in constructing retrievers trained on existing instruction-aware retrieval datasets.
FRUIT: Faithfully Reflecting Updated Information in Text
Textual knowledge bases such as Wikipedia require considerable effort to keep up to date and consistent. While automated writing assistants could potentially ease this burden, the problem of suggesting edits grounded in external knowledge has been under-explored. In this paper, we introduce the novel generation task of *faithfully reflecting updated information in text* (FRUIT) where the goal is to update an existing article given new evidence. We release the FRUIT-WIKI dataset, a collection of over 170K distantly supervised data produced from pairs of Wikipedia snapshots, along with our data generation pipeline and a gold evaluation set of 914 instances whose edits are guaranteed to be supported by the evidence. We provide benchmark results for popular generation systems as well as EDIT5 -- a T5-based approach tailored to editing we introduce that establishes the state of the art. Our analysis shows that developing models that can update articles faithfully requires new capabilities for neural generation models, and opens doors to many new applications.
HQ-Edit: A High-Quality Dataset for Instruction-based Image Editing
This study introduces HQ-Edit, a high-quality instruction-based image editing dataset with around 200,000 edits. Unlike prior approaches relying on attribute guidance or human feedback on building datasets, we devise a scalable data collection pipeline leveraging advanced foundation models, namely GPT-4V and DALL-E 3. To ensure its high quality, diverse examples are first collected online, expanded, and then used to create high-quality diptychs featuring input and output images with detailed text prompts, followed by precise alignment ensured through post-processing. In addition, we propose two evaluation metrics, Alignment and Coherence, to quantitatively assess the quality of image edit pairs using GPT-4V. HQ-Edits high-resolution images, rich in detail and accompanied by comprehensive editing prompts, substantially enhance the capabilities of existing image editing models. For example, an HQ-Edit finetuned InstructPix2Pix can attain state-of-the-art image editing performance, even surpassing those models fine-tuned with human-annotated data. The project page is https://thefllood.github.io/HQEdit_web.
LongForm: Optimizing Instruction Tuning for Long Text Generation with Corpus Extraction
Instruction tuning enables language models to generalize more effectively and better follow user intent. However, obtaining instruction data can be costly and challenging. Prior works employ methods such as expensive human annotation, crowd-sourced datasets with alignment issues, or generating noisy examples via LLMs. We introduce the LongForm dataset, which is created by leveraging English corpus examples with augmented instructions. We select a diverse set of human-written documents from existing corpora such as C4 and Wikipedia and generate instructions for the given documents via LLMs. This approach provides a cheaper and cleaner instruction-tuning dataset and one suitable for long text generation. We finetune T5, OPT, and LLaMA models on our dataset and show that even smaller LongForm models have good generalization capabilities for text generation. Our models outperform 10x larger language models without instruction tuning on various tasks such as story/recipe generation and long-form question answering. Moreover, LongForm models outperform prior instruction-tuned models such as FLAN-T5 and Alpaca by a large margin. Finally, our models can effectively follow and answer multilingual instructions; we demonstrate this for news generation. We publicly release our data and models: https://github.com/akoksal/LongForm.
Enhancing Text Editing for Grammatical Error Correction: Arabic as a Case Study
Text editing frames grammatical error correction (GEC) as a sequence tagging problem, where edit tags are assigned to input tokens, and applying these edits results in the corrected text. This approach has gained attention for its efficiency and interpretability. However, while extensively explored for English, text editing remains largely underexplored for morphologically rich languages like Arabic. In this paper, we introduce a text editing approach that derives edit tags directly from data, eliminating the need for language-specific edits. We demonstrate its effectiveness on Arabic, a diglossic and morphologically rich language, and investigate the impact of different edit representations on model performance. Our approach achieves SOTA results on two Arabic GEC benchmarks and performs on par with SOTA on two others. Additionally, our models are over six times faster than existing Arabic GEC systems, making our approach more practical for real-world applications. Finally, we explore ensemble models, demonstrating how combining different models leads to further performance improvements. We make our code, data, and pretrained models publicly available.
UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language
We present a corpus professionally annotated for grammatical error correction (GEC) and fluency edits in the Ukrainian language. To the best of our knowledge, this is the first GEC corpus for the Ukrainian language. We collected texts with errors (20,715 sentences) from a diverse pool of contributors, including both native and non-native speakers. The data cover a wide variety of writing domains, from text chats and essays to formal writing. Professional proofreaders corrected and annotated the corpus for errors relating to fluency, grammar, punctuation, and spelling. This corpus can be used for developing and evaluating GEC systems in Ukrainian. More generally, it can be used for researching multilingual and low-resource NLP, morphologically rich languages, document-level GEC, and fluency correction. The corpus is publicly available at https://github.com/grammarly/ua-gec
PRewrite: Prompt Rewriting with Reinforcement Learning
Prompt engineering is critical for the development of LLM-based applications. However, it is usually done manually in a "trial and error" fashion. This manual procedure can be time consuming, ineffective, and the generated prompts are, in a lot of cases, sub-optimal. Even for the prompts which seemingly work well, there is always a lingering question: can the prompts be made better with further modifications? To address these questions, in this paper, we investigate prompt engineering automation. We consider a specific use case scenario in which developers/users have drafted initial prompts, but lack the time/expertise to optimize them. We propose PRewrite, an automated tool to rewrite these drafts and to generate highly effective new prompts. PRewrite is based on the Reinforcement Learning (RL) framework which allows for end-to-end optimization and our design allows the RL search to happen in a large action space. The automated tool leverages manually crafted prompts as starting points which makes the rewriting procedure more guided and efficient. The generated prompts are human readable, and self-explanatory, unlike some of those in previous works. We conducted extensive experiments on diverse datasets and found that the prompts generated with this new method not only outperform professionally crafted prompts, but also prompts generated with other previously proposed methods.
ACE: Anti-Editing Concept Erasure in Text-to-Image Models
Recent advance in text-to-image diffusion models have significantly facilitated the generation of high-quality images, but also raising concerns about the illegal creation of harmful content, such as copyrighted images. Existing concept erasure methods achieve superior results in preventing the production of erased concept from prompts, but typically perform poorly in preventing undesired editing. To address this issue, we propose an Anti-Editing Concept Erasure (ACE) method, which not only erases the target concept during generation but also filters out it during editing. Specifically, we propose to inject the erasure guidance into both conditional and the unconditional noise prediction, enabling the model to effectively prevent the creation of erasure concepts during both editing and generation. Furthermore, a stochastic correction guidance is introduced during training to address the erosion of unrelated concepts. We conducted erasure editing experiments with representative editing methods (i.e., LEDITS++ and MasaCtrl) to erase IP characters, and the results indicate that our ACE effectively filters out target concepts in both types of edits. Additional experiments on erasing explicit concepts and artistic styles further demonstrate that our ACE performs favorably against state-of-the-art methods. Our code will be publicly available at https://github.com/120L020904/ACE.
Is Prompt All You Need? No. A Comprehensive and Broader View of Instruction Learning
Task semantics can be expressed by a set of input-to-output examples or a piece of textual instruction. Conventional machine learning approaches for natural language processing (NLP) mainly rely on the availability of large-scale sets of task-specific examples. Two issues arise: first, collecting task-specific labeled examples does not apply to scenarios where tasks may be too complicated or costly to annotate, or the system is required to handle a new task immediately; second, this is not user-friendly since end-users are probably more willing to provide task description rather than a set of examples before using the system. Therefore, the community is paying increasing interest in a new supervision-seeking paradigm for NLP: learning from task instructions. Despite its impressive progress, there are some common issues that the community struggles with. This survey paper tries to summarize and provide insights into the current research on instruction learning, particularly by answering the following questions: (i) What is task instruction, and what instruction types exist? (ii) How to model instructions? (iii) What factors influence and explain the instructions' performance? (iv) What challenges remain in instruction learning? To our knowledge, this is the first comprehensive survey about textual instructions.
Editing Conceptual Knowledge for Large Language Models
Recently, there has been a growing interest in knowledge editing for Large Language Models (LLMs). Current approaches and evaluations merely explore the instance-level editing, while whether LLMs possess the capability to modify concepts remains unclear. This paper pioneers the investigation of editing conceptual knowledge for LLMs, by constructing a novel benchmark dataset ConceptEdit and establishing a suite of new metrics for evaluation. The experimental results reveal that, although existing editing methods can efficiently modify concept-level definition to some extent, they also have the potential to distort the related instantial knowledge in LLMs, leading to poor performance. We anticipate this can inspire further progress in better understanding LLMs. Our project homepage is available at https://zjunlp.github.io/project/ConceptEdit.
AlphaEdit: Null-Space Constrained Knowledge Editing for Language Models
Large language models (LLMs) often exhibit hallucinations due to incorrect or outdated knowledge. Hence, model editing methods have emerged to enable targeted knowledge updates. To achieve this, a prevailing paradigm is the locating-then-editing approach, which first locates influential parameters and then edits them by introducing a perturbation. While effective, current studies have demonstrated that this perturbation inevitably disrupt the originally preserved knowledge within LLMs, especially in sequential editing scenarios. To address this, we introduce AlphaEdit, a novel solution that projects perturbation onto the null space of the preserved knowledge before applying it to the parameters. We theoretically prove that this projection ensures the output of post-edited LLMs remains unchanged when queried about the preserved knowledge, thereby mitigating the issue of disruption. Extensive experiments on various LLMs, including LLaMA3, GPT2-XL, and GPT-J, show that AlphaEdit boosts the performance of most locating-then-editing methods by an average of 36.4% with a single line of additional code for projection solely. Our code is available at: https://github.com/jianghoucheng/AlphaEdit.
Instruction-Following Evaluation for Large Language Models
One core capability of Large Language Models (LLMs) is to follow natural language instructions. However, the evaluation of such abilities is not standardized: Human evaluations are expensive, slow, and not objectively reproducible, while LLM-based auto-evaluation is potentially biased or limited by the ability of the evaluator LLM. To overcome these issues, we introduce Instruction-Following Eval (IFEval) for large language models. IFEval is a straightforward and easy-to-reproduce evaluation benchmark. It focuses on a set of "verifiable instructions" such as "write in more than 400 words" and "mention the keyword of AI at least 3 times". We identified 25 types of those verifiable instructions and constructed around 500 prompts, with each prompt containing one or more verifiable instructions. We show evaluation results of two widely available LLMs on the market. Our code and data can be found at https://github.com/google-research/google-research/tree/master/instruction_following_eval
Microsoft COCO Captions: Data Collection and Evaluation Server
In this paper we describe the Microsoft COCO Caption dataset and evaluation server. When completed, the dataset will contain over one and a half million captions describing over 330,000 images. For the training and validation images, five independent human generated captions will be provided. To ensure consistency in evaluation of automatic caption generation algorithms, an evaluation server is used. The evaluation server receives candidate captions and scores them using several popular metrics, including BLEU, METEOR, ROUGE and CIDEr. Instructions for using the evaluation server are provided.
CodecLM: Aligning Language Models with Tailored Synthetic Data
Instruction tuning has emerged as the key in aligning large language models (LLMs) with specific task instructions, thereby mitigating the discrepancy between the next-token prediction objective and users' actual goals. To reduce the labor and time cost to collect or annotate data by humans, researchers start to explore the use of LLMs to generate instruction-aligned synthetic data. Recent works focus on generating diverse instructions and applying LLM to increase instruction complexity, often neglecting downstream use cases. It remains unclear how to tailor high-quality data to elicit better instruction-following abilities in different target instruction distributions and LLMs. To this end, we introduce CodecLM, a general framework for adaptively generating high-quality synthetic data for LLM alignment with different downstream instruction distributions and LLMs. Drawing on the Encode-Decode principles, we use LLMs as codecs to guide the data generation process. We first encode seed instructions into metadata, which are concise keywords generated on-the-fly to capture the target instruction distribution, and then decode metadata to create tailored instructions. We also introduce Self-Rubrics and Contrastive Filtering during decoding to tailor data-efficient samples. Extensive experiments on four open-domain instruction following benchmarks validate the effectiveness of CodecLM over the current state-of-the-arts.
"President Vows to Cut <Taxes> Hair": Dataset and Analysis of Creative Text Editing for Humorous Headlines
We introduce, release, and analyze a new dataset, called Humicroedit, for research in computational humor. Our publicly available data consists of regular English news headlines paired with versions of the same headlines that contain simple replacement edits designed to make them funny. We carefully curated crowdsourced editors to create funny headlines and judges to score a to a total of 15,095 edited headlines, with five judges per headline. The simple edits, usually just a single word replacement, mean we can apply straightforward analysis techniques to determine what makes our edited headlines humorous. We show how the data support classic theories of humor, such as incongruity, superiority, and setup/punchline. Finally, we develop baseline classifiers that can predict whether or not an edited headline is funny, which is a first step toward automatically generating humorous headlines as an approach to creating topical humor.
Help me write a poem: Instruction Tuning as a Vehicle for Collaborative Poetry Writing
Recent work in training large language models (LLMs) to follow natural language instructions has opened up exciting opportunities for natural language interface design. Building on the prior success of LLMs in the realm of computer-assisted creativity, we aim to study if LLMs can improve the quality of user-generated content through collaboration. We present CoPoet, a collaborative poetry writing system. In contrast to auto-completing a user's text, CoPoet is controlled by user instructions that specify the attributes of the desired text, such as Write a sentence about `love' or Write a sentence ending in `fly'. The core component of our system is a language model fine-tuned on a diverse collection of instructions for poetry writing. Our model is not only competitive with publicly available LLMs trained on instructions (InstructGPT), but is also capable of satisfying unseen compositional instructions. A study with 15 qualified crowdworkers shows that users successfully write poems with CoPoet on diverse topics ranging from Monarchy to Climate change. Further, the collaboratively written poems are preferred by third-party evaluators over those written without the system.
EasyInstruct: An Easy-to-use Instruction Processing Framework for Large Language Models
In recent years, instruction tuning has gained increasing attention and emerged as a crucial technique to enhance the capabilities of Large Language Models (LLMs). To construct high-quality instruction datasets, many instruction processing approaches have been proposed, aiming to achieve a delicate balance between data quantity and data quality. Nevertheless, due to inconsistencies that persist among various instruction processing methods, there is no standard open-source instruction processing implementation framework available for the community, which hinders practitioners from further developing and advancing. To facilitate instruction processing research and development, we present EasyInstruct, an easy-to-use instruction processing framework for LLMs, which modularizes instruction generation, selection, and prompting, while also considering their combination and interaction. EasyInstruct is publicly released and actively maintained at https://github.com/zjunlp/EasyInstruct, along with a running demo App at https://huggingface.co/spaces/zjunlp/EasyInstruct for quick-start, calling for broader research centered on instruction data.
Automated Conversion of Music Videos into Lyric Videos
Musicians and fans often produce lyric videos, a form of music videos that showcase the song's lyrics, for their favorite songs. However, making such videos can be challenging and time-consuming as the lyrics need to be added in synchrony and visual harmony with the video. Informed by prior work and close examination of existing lyric videos, we propose a set of design guidelines to help creators make such videos. Our guidelines ensure the readability of the lyric text while maintaining a unified focus of attention. We instantiate these guidelines in a fully automated pipeline that converts an input music video into a lyric video. We demonstrate the robustness of our pipeline by generating lyric videos from a diverse range of input sources. A user study shows that lyric videos generated by our pipeline are effective in maintaining text readability and unifying the focus of attention.
Understanding Iterative Revision from Human-Written Text
Writing is, by nature, a strategic, adaptive, and more importantly, an iterative process. A crucial part of writing is editing and revising the text. Previous works on text revision have focused on defining edit intention taxonomies within a single domain or developing computational models with a single level of edit granularity, such as sentence-level edits, which differ from human's revision cycles. This work describes IteraTeR: the first large-scale, multi-domain, edit-intention annotated corpus of iteratively revised text. In particular, IteraTeR is collected based on a new framework to comprehensively model the iterative text revisions that generalize to various domains of formal writing, edit intentions, revision depths, and granularities. When we incorporate our annotated edit intentions, both generative and edit-based text revision models significantly improve automatic evaluations. Through our work, we better understand the text revision process, making vital connections between edit intentions and writing quality, enabling the creation of diverse corpora to support computational modeling of iterative text revisions.
InstructUIE: Multi-task Instruction Tuning for Unified Information Extraction
Large language models have unlocked strong multi-task capabilities from reading instructive prompts. However, recent studies have shown that existing large models still have difficulty with information extraction tasks. For example, gpt-3.5-turbo achieved an F1 score of 18.22 on the Ontonotes dataset, which is significantly lower than the state-of-the-art performance. In this paper, we propose InstructUIE, a unified information extraction framework based on instruction tuning, which can uniformly model various information extraction tasks and capture the inter-task dependency. To validate the proposed method, we introduce IE INSTRUCTIONS, a benchmark of 32 diverse information extraction datasets in a unified text-to-text format with expert-written instructions. Experimental results demonstrate that our method achieves comparable performance to Bert in supervised settings and significantly outperforms the state-of-the-art and gpt3.5 in zero-shot settings.
Efficient Pre-training for Localized Instruction Generation of Videos
Procedural videos, exemplified by recipe demonstrations, are instrumental in conveying step-by-step instructions. However, understanding such videos is challenging as it involves the precise localization of steps and the generation of textual instructions. Manually annotating steps and writing instructions is costly, which limits the size of current datasets and hinders effective learning. Leveraging large but noisy video-transcript datasets for pre-training can boost performance but demands significant computational resources. Furthermore, transcripts contain irrelevant content and differ in style from human-written instructions. To mitigate these issues, we propose a novel technique, Sieve-&-Swap, to automatically generate high-quality training data for the recipe domain: (i) Sieve: filters irrelevant transcripts and (ii) Swap: acquires high-quality text by replacing transcripts with human-written instruction from a text-only recipe dataset. The resulting dataset is three orders of magnitude smaller than current web-scale datasets but enables efficient training of large-scale models. Alongside Sieve-&-Swap, we propose Procedure Transformer (ProcX), a model for end-to-end step localization and instruction generation for procedural videos. When pre-trained on our curated dataset, this model achieves state-of-the-art performance on YouCook2 and Tasty while using a fraction of the training data. We have released code and dataset.
The Mirage of Model Editing: Revisiting Evaluation in the Wild
Despite near-perfect results in artificial evaluations, the effectiveness of model editing in real-world applications remains unexplored. To bridge this gap, we propose to study model editing in question answering (QA) by establishing a rigorous evaluation practice to assess the effectiveness of editing methods in correcting LLMs' errors. It consists of QAEdit, a new benchmark derived from popular QA datasets, and a standardized evaluation framework. Our single editing experiments indicate that current editing methods perform substantially worse than previously reported (38.5% vs. ~96%). Through module analysis and controlled experiments, we demonstrate that this performance decline stems from issues in evaluation practices of prior editing research. One key issue is the inappropriate use of teacher forcing in testing prevents error propagation by feeding ground truth tokens (inaccessible in real-world scenarios) as input. Furthermore, we simulate real-world deployment by sequential editing, revealing that current approaches fail drastically with only 1000 edits. Our analysis provides a fundamental reexamination of both the real-world applicability of existing model editing methods and their evaluation practices, and establishes a rigorous evaluation framework with key insights to advance reliable and practical model editing research.
Uncovering Overfitting in Large Language Model Editing
Knowledge editing has been proposed as an effective method for updating and correcting the internal knowledge of Large Language Models (LLMs). However, existing editing methods often struggle with complex tasks, such as multi-hop reasoning. In this paper, we identify and investigate the phenomenon of Editing Overfit, where edited models assign disproportionately high probabilities to the edit target, hindering the generalization of new knowledge in complex scenarios. We attribute this issue to the current editing paradigm, which places excessive emphasis on the direct correspondence between the input prompt and the edit target for each edit sample. To further explore this issue, we introduce a new benchmark, EVOKE (EValuation of Editing Overfit in Knowledge Editing), along with fine-grained evaluation metrics. Through comprehensive experiments and analysis, we demonstrate that Editing Overfit is prevalent in current editing methods and that common overfitting mitigation strategies are of limited effectiveness in knowledge editing. To overcome this, inspired by LLMs' knowledge recall mechanisms, we propose a new plug-and-play strategy called Learn to Inference (LTI), which introduce a Multi-stage Inference Constraint module to guide the edited models in recalling new knowledge similarly to how unedited LLMs leverage knowledge through in-context learning. Extensive experimental results across a wide range of tasks validate the effectiveness of LTI in mitigating Editing Overfit.
InstructIE: A Chinese Instruction-based Information Extraction Dataset
We introduce a new Information Extraction (IE) task dubbed Instruction-based IE, which aims to ask the system to follow specific instructions or guidelines to extract information. To facilitate research in this area, we construct a dataset called InstructIE, consisting of 270,000 weakly supervised data from Chinese Wikipedia and 1,000 high-quality crowdsourced annotated instances. We further evaluate the performance of various baseline models on the InstructIE dataset. The results reveal that although current models exhibit promising performance, there is still room for improvement. Furthermore, we conduct a comprehensive case study analysis, underlining the challenges inherent in the Instruction-based IE task. Code and dataset are available at https://github.com/zjunlp/DeepKE/tree/main/example/llm.
Ada-Instruct: Adapting Instruction Generators for Complex Reasoning
Generating diverse and sophisticated instructions for downstream tasks by Large Language Models (LLMs) is pivotal for advancing the effect. Current approaches leverage closed-source LLMs, employing in-context prompting for instruction generation. However, in this paper, we found that in-context prompting cannot generate complex instructions with length ge 100 for tasks like code completion. To solve this problem, we introduce Ada-Instruct, an adaptive instruction generator developed by fine-tuning open-source LLMs. Our pivotal finding illustrates that fine-tuning open-source LLMs with a mere ten samples generates long instructions that maintain distributional consistency for complex reasoning tasks. We empirically validated Ada-Instruct's efficacy across different applications, including code completion, mathematical reasoning, and commonsense reasoning. The results underscore Ada-Instruct's superiority, evidencing its improvements over its base models, current self-instruct methods, and other state-of-the-art models.
Reframing Instructional Prompts to GPTk's Language
What kinds of instructional prompts are easier to follow for Language Models (LMs)? We study this question by conducting extensive empirical analysis that shed light on important features of successful instructional prompts. Specifically, we study several classes of reframing techniques for manual reformulation of prompts into more effective ones. Some examples include decomposing a complex task instruction into multiple simpler tasks or itemizing instructions into sequential steps. Our experiments compare the zero-shot and few-shot performance of LMs prompted with reframed instructions on 12 NLP tasks across 6 categories. Compared with original instructions, our reframed instructions lead to significant improvements across LMs with different sizes. For example, the same reframed prompts boost few-shot performance of GPT3-series and GPT2-series by 12.5% and 6.7% respectively averaged over all tasks. Furthermore, reframed instructions reduce the number of examples required to prompt LMs in the few-shot setting. We hope these empirically-driven techniques will pave the way towards more effective future prompting algorithms.
LEMoE: Advanced Mixture of Experts Adaptor for Lifelong Model Editing of Large Language Models
Large language models (LLMs) require continual knowledge updates to stay abreast of the ever-changing world facts, prompting the formulation of lifelong model editing task. While recent years have witnessed the development of various techniques for single and batch editing, these methods either fail to apply or perform sub-optimally when faced with lifelong editing. In this paper, we introduce LEMoE, an advanced Mixture of Experts (MoE) adaptor for lifelong model editing. We first analyze the factors influencing the effectiveness of conventional MoE adaptor in lifelong editing, including catastrophic forgetting, inconsistent routing and order sensitivity. Based on these insights, we propose a tailored module insertion method to achieve lifelong editing, incorporating a novel KV anchor routing to enhance routing consistency between training and inference stage, along with a concise yet effective clustering-based editing order planning. Experimental results demonstrate the effectiveness of our method in lifelong editing, surpassing previous model editing techniques while maintaining outstanding performance in batch editing task. Our code will be available.
Text Editing by Command
A prevailing paradigm in neural text generation is one-shot generation, where text is produced in a single step. The one-shot setting is inadequate, however, when the constraints the user wishes to impose on the generated text are dynamic, especially when authoring longer documents. We address this limitation with an interactive text generation setting in which the user interacts with the system by issuing commands to edit existing text. To this end, we propose a novel text editing task, and introduce WikiDocEdits, a dataset of single-sentence edits crawled from Wikipedia. We show that our Interactive Editor, a transformer-based model trained on this dataset, outperforms baselines and obtains positive results in both automatic and human evaluations. We present empirical and qualitative analyses of this model's performance.
Reducing Sequence Length by Predicting Edit Operations with Large Language Models
Large Language Models (LLMs) have demonstrated remarkable performance in various tasks and gained significant attention. LLMs are also used for local sequence transduction tasks, including grammatical error correction (GEC) and formality style transfer, where most tokens in a source text are kept unchanged. However, the models that generate all target tokens in such tasks have a tendency to simply copy the input text as is, without making needed changes, because the difference between input and output texts is minimal in the training data. This is also inefficient because the computational cost grows quadratically with the target sequence length with Transformer. This paper proposes predicting edit spans for the source text for local sequence transduction tasks. Representing an edit span with a position of the source text and corrected tokens, we can reduce the length of the target sequence and the computational cost for inference. We apply instruction tuning for LLMs on the supervision data of edit spans. Experiments show that the proposed method achieves comparable performance to the baseline in four tasks, paraphrasing, formality style transfer, GEC, and text simplification, despite reducing the length of the target text by as small as 21%. Furthermore, we report that the task-specific fine-tuning with the proposed method achieved state-of-the-art performance in the four tasks.
Auto-Instruct: Automatic Instruction Generation and Ranking for Black-Box Language Models
Large language models (LLMs) can perform a wide range of tasks by following natural language instructions, without the necessity of task-specific fine-tuning. Unfortunately, the performance of LLMs is greatly influenced by the quality of these instructions, and manually writing effective instructions for each task is a laborious and subjective process. In this paper, we introduce Auto-Instruct, a novel method to automatically improve the quality of instructions provided to LLMs. Our method leverages the inherent generative ability of LLMs to produce diverse candidate instructions for a given task, and then ranks them using a scoring model trained on a variety of 575 existing NLP tasks. In experiments on 118 out-of-domain tasks, Auto-Instruct surpasses both human-written instructions and existing baselines of LLM-generated instructions. Furthermore, our method exhibits notable generalizability even with other LLMs that are not incorporated into its training process.
Understanding Generative AI Capabilities in Everyday Image Editing Tasks
Generative AI (GenAI) holds significant promise for automating everyday image editing tasks, especially following the recent release of GPT-4o on March 25, 2025. However, what subjects do people most often want edited? What kinds of editing actions do they want to perform (e.g., removing or stylizing the subject)? Do people prefer precise edits with predictable outcomes or highly creative ones? By understanding the characteristics of real-world requests and the corresponding edits made by freelance photo-editing wizards, can we draw lessons for improving AI-based editors and determine which types of requests can currently be handled successfully by AI editors? In this paper, we present a unique study addressing these questions by analyzing 83k requests from the past 12 years (2013-2025) on the Reddit community, which collected 305k PSR-wizard edits. According to human ratings, approximately only 33% of requests can be fulfilled by the best AI editors (including GPT-4o, Gemini-2.0-Flash, SeedEdit). Interestingly, AI editors perform worse on low-creativity requests that require precise editing than on more open-ended tasks. They often struggle to preserve the identity of people and animals, and frequently make non-requested touch-ups. On the other side of the table, VLM judges (e.g., o1) perform differently from human judges and may prefer AI edits more than human edits. Code and qualitative examples are available at: https://psrdataset.github.io
Mol-Instructions: A Large-Scale Biomolecular Instruction Dataset for Large Language Models
Large Language Models (LLMs), with their remarkable task-handling capabilities and innovative outputs, have catalyzed significant advancements across a spectrum of fields. However, their proficiency within specialized domains such as biomolecular studies remains limited. To address this challenge, we introduce Mol-Instructions, a meticulously curated, comprehensive instruction dataset expressly designed for the biomolecular realm. Mol-Instructions is composed of three pivotal components: molecule-oriented instructions, protein-oriented instructions, and biomolecular text instructions, each curated to enhance the understanding and prediction capabilities of LLMs concerning biomolecular features and behaviors. Through extensive instruction tuning experiments on the representative LLM, we underscore the potency of Mol-Instructions to enhance the adaptability and cognitive acuity of large models within the complex sphere of biomolecular studies, thereby promoting advancements in the biomolecular research community. Mol-Instructions is made publicly accessible for future research endeavors and will be subjected to continual updates for enhanced applicability.
KIWI: A Dataset of Knowledge-Intensive Writing Instructions for Answering Research Questions
Large language models (LLMs) adapted to follow user instructions are now widely deployed as conversational agents. In this work, we examine one increasingly common instruction-following task: providing writing assistance to compose a long-form answer. To evaluate the capabilities of current LLMs on this task, we construct KIWI, a dataset of knowledge-intensive writing instructions in the scientific domain. Given a research question, an initial model-generated answer and a set of relevant papers, an expert annotator iteratively issues instructions for the model to revise and improve its answer. We collect 1,260 interaction turns from 234 interaction sessions with three state-of-the-art LLMs. Each turn includes a user instruction, a model response, and a human evaluation of the model response. Through a detailed analysis of the collected responses, we find that all models struggle to incorporate new information into an existing answer, and to perform precise and unambiguous edits. Further, we find that models struggle to judge whether their outputs successfully followed user instructions, with accuracy at least 10 points short of human agreement. Our findings indicate that KIWI will be a valuable resource to measure progress and improve LLMs' instruction-following capabilities for knowledge intensive writing tasks.
Benchmarking Large Language Models on Controllable Generation under Diversified Instructions
While large language models (LLMs) have exhibited impressive instruction-following capabilities, it is still unclear whether and to what extent they can respond to explicit constraints that might be entailed in various instructions. As a significant aspect of LLM alignment, it is thus important to formulate such a specialized set of instructions as well as investigate the resulting behavior of LLMs. To address this vacancy, we propose a new benchmark CoDI-Eval to systematically and comprehensively evaluate LLMs' responses to instructions with various constraints. We construct a large collection of constraints-attributed instructions as a test suite focused on both generalization and coverage. Specifically, we advocate an instruction diversification process to synthesize diverse forms of constraint expression and also deliberate the candidate task taxonomy with even finer-grained sub-categories. Finally, we automate the entire evaluation process to facilitate further developments. Different from existing studies on controllable text generation, CoDI-Eval extends the scope to the prevalent instruction-following paradigm for the first time. We provide extensive evaluations of representative LLMs (e.g., ChatGPT, Vicuna) on CoDI-Eval, revealing their limitations in following instructions with specific constraints and there is still a significant gap between open-source and commercial closed-source LLMs. We believe this benchmark will facilitate research into improving the controllability of LLMs' responses to instructions. Our data and code are available at https://github.com/Xt-cyh/CoDI-Eval.
Text Annotation Handbook: A Practical Guide for Machine Learning Projects
This handbook is a hands-on guide on how to approach text annotation tasks. It provides a gentle introduction to the topic, an overview of theoretical concepts as well as practical advice. The topics covered are mostly technical, but business, ethical and regulatory issues are also touched upon. The focus lies on readability and conciseness rather than completeness and scientific rigor. Experience with annotation and knowledge of machine learning are useful but not required. The document may serve as a primer or reference book for a wide range of professions such as team leaders, project managers, IT architects, software developers and machine learning engineers.
Creative Problem Solving in Large Language and Vision Models -- What Would it Take?
We advocate for a strong integration of Computational Creativity (CC) with research in large language and vision models (LLVMs) to address a key limitation of these models, i.e., creative problem solving. We present preliminary experiments showing how CC principles can be applied to address this limitation. Our goal is to foster discussions on creative problem solving in LLVMs and CC at prestigious ML venues. Our code is available at: https://github.com/lnairGT/creative-problem-solving-LLMs
Robust and Scalable Model Editing for Large Language Models
Large language models (LLMs) can make predictions using parametric knowledge--knowledge encoded in the model weights--or contextual knowledge--knowledge presented in the context. In many scenarios, a desirable behavior is that LLMs give precedence to contextual knowledge when it conflicts with the parametric knowledge, and fall back to using their parametric knowledge when the context is irrelevant. This enables updating and correcting the model's knowledge by in-context editing instead of retraining. Previous works have shown that LLMs are inclined to ignore contextual knowledge and fail to reliably fall back to parametric knowledge when presented with irrelevant context. In this work, we discover that, with proper prompting methods, instruction-finetuned LLMs can be highly controllable by contextual knowledge and robust to irrelevant context. Utilizing this feature, we propose EREN (Edit models by REading Notes) to improve the scalability and robustness of LLM editing. To better evaluate the robustness of model editors, we collect a new dataset, that contains irrelevant questions that are more challenging than the ones in existing datasets. Empirical results show that our method outperforms current state-of-the-art methods by a large margin. Unlike existing techniques, it can integrate knowledge from multiple edits, and correctly respond to syntactically similar but semantically unrelated inputs (and vice versa). The source code can be found at https://github.com/thunlp/EREN.
Instruction Tuning for Large Language Models: A Survey
This paper surveys research works in the quickly advancing field of instruction tuning (IT), a crucial technique to enhance the capabilities and controllability of large language models (LLMs). Instruction tuning refers to the process of further training LLMs on a dataset consisting of (instruction, output) pairs in a supervised fashion, which bridges the gap between the next-word prediction objective of LLMs and the users' objective of having LLMs adhere to human instructions. In this work, we make a systematic review of the literature, including the general methodology of IT, the construction of IT datasets, the training of IT models, and applications to different modalities, domains and applications, along with an analysis on aspects that influence the outcome of IT (e.g., generation of instruction outputs, size of the instruction dataset, etc). We also review the potential pitfalls of IT along with criticism against it, along with efforts pointing out current deficiencies of existing strategies and suggest some avenues for fruitful research.
Misspelling Correction with Pre-trained Contextual Language Model
Spelling irregularities, known now as spelling mistakes, have been found for several centuries. As humans, we are able to understand most of the misspelled words based on their location in the sentence, perceived pronunciation, and context. Unlike humans, computer systems do not possess the convenient auto complete functionality of which human brains are capable. While many programs provide spelling correction functionality, many systems do not take context into account. Moreover, Artificial Intelligence systems function in the way they are trained on. With many current Natural Language Processing (NLP) systems trained on grammatically correct text data, many are vulnerable against adversarial examples, yet correctly spelled text processing is crucial for learning. In this paper, we investigate how spelling errors can be corrected in context, with a pre-trained language model BERT. We present two experiments, based on BERT and the edit distance algorithm, for ranking and selecting candidate corrections. The results of our experiments demonstrated that when combined properly, contextual word embeddings of BERT and edit distance are capable of effectively correcting spelling errors.
Harnessing the Power of David against Goliath: Exploring Instruction Data Generation without Using Closed-Source Models
Instruction tuning is instrumental in enabling Large Language Models~(LLMs) to follow user instructions to complete various open-domain tasks. The success of instruction tuning depends on the availability of high-quality instruction data. Owing to the exorbitant cost and substandard quality of human annotation, recent works have been deeply engaged in the exploration of the utilization of powerful closed-source models to generate instruction data automatically. However, these methods carry potential risks arising from the usage requirements of powerful closed-source models, which strictly forbid the utilization of their outputs to develop machine learning models. To deal with this problem, in this work, we explore alternative approaches to generate high-quality instruction data that do not rely on closed-source models. Our exploration includes an investigation of various existing instruction generation methods, culminating in the integration of the most efficient variant with two novel strategies to enhance the quality further. Evaluation results from two benchmarks and the GPT-4 model demonstrate the effectiveness of our generated instruction data, which can outperform Alpaca, a method reliant on closed-source models. We hope that more progress can be achieved in generating high-quality instruction data without using closed-source models.
Emo-Avatar: Efficient Monocular Video Style Avatar through Texture Rendering
Artistic video portrait generation is a significant and sought-after task in the fields of computer graphics and vision. While various methods have been developed that integrate NeRFs or StyleGANs with instructional editing models for creating and editing drivable portraits, these approaches face several challenges. They often rely heavily on large datasets, require extensive customization processes, and frequently result in reduced image quality. To address the above problems, we propose the Efficient Monotonic Video Style Avatar (Emo-Avatar) through deferred neural rendering that enhances StyleGAN's capacity for producing dynamic, drivable portrait videos. We proposed a two-stage deferred neural rendering pipeline. In the first stage, we utilize few-shot PTI initialization to initialize the StyleGAN generator through several extreme poses sampled from the video to capture the consistent representation of aligned faces from the target portrait. In the second stage, we propose a Laplacian pyramid for high-frequency texture sampling from UV maps deformed by dynamic flow of expression for motion-aware texture prior integration to provide torso features to enhance StyleGAN's ability to generate complete and upper body for portrait video rendering. Emo-Avatar reduces style customization time from hours to merely 5 minutes compared with existing methods. In addition, Emo-Avatar requires only a single reference image for editing and employs region-aware contrastive learning with semantic invariant CLIP guidance, ensuring consistent high-resolution output and identity preservation. Through both quantitative and qualitative assessments, Emo-Avatar demonstrates superior performance over existing methods in terms of training efficiency, rendering quality and editability in self- and cross-reenactment.
Pay Attention to Your Tone: Introducing a New Dataset for Polite Language Rewrite
We introduce PoliteRewrite -- a dataset for polite language rewrite which is a novel sentence rewrite task. Compared with previous text style transfer tasks that can be mostly addressed by slight token- or phrase-level edits, polite language rewrite requires deep understanding and extensive sentence-level edits over an offensive and impolite sentence to deliver the same message euphemistically and politely, which is more challenging -- not only for NLP models but also for human annotators to rewrite with effort. To alleviate the human effort for efficient annotation, we first propose a novel annotation paradigm by a collaboration of human annotators and GPT-3.5 to annotate PoliteRewrite. The released dataset has 10K polite sentence rewrites annotated collaboratively by GPT-3.5 and human, which can be used as gold standard for training, validation and test; and 100K high-quality polite sentence rewrites by GPT-3.5 without human review. We wish this work (The dataset (10K+100K) will be released soon) could contribute to the research on more challenging sentence rewrite, and provoke more thought in future on resource annotation paradigm with the help of the large-scaled pretrained models.
InverseCoder: Unleashing the Power of Instruction-Tuned Code LLMs with Inverse-Instruct
Recent advancements in open-source code large language models (LLMs) have demonstrated remarkable coding abilities by fine-tuning on the data generated from powerful closed-source LLMs such as GPT-3.5 and GPT-4 for instruction tuning. This paper explores how to further improve an instruction-tuned code LLM by generating data from itself rather than querying closed-source LLMs. Our key observation is the misalignment between the translation of formal and informal languages: translating formal language (i.e., code) to informal language (i.e., natural language) is more straightforward than the reverse. Based on this observation, we propose INVERSE-INSTRUCT, which summarizes instructions from code snippets instead of the reverse. Specifically, given an instruction tuning corpus for code and the resulting instruction-tuned code LLM, we ask the code LLM to generate additional high-quality instructions for the original corpus through code summarization and self-evaluation. Then, we fine-tune the base LLM on the combination of the original corpus and the self-generated one, which yields a stronger instruction-tuned LLM. We present a series of code LLMs named InverseCoder, which surpasses the performance of the original code LLMs on a wide range of benchmarks, including Python text-to-code generation, multilingual coding, and data-science code generation.
Patent-CR: A Dataset for Patent Claim Revision
This paper presents Patent-CR, the first dataset created for the patent claim revision task in English. It includes both initial patent applications rejected by patent examiners and the final granted versions. Unlike normal text revision tasks that predominantly focus on enhancing sentence quality, such as grammar correction and coherence improvement, patent claim revision aims at ensuring the claims meet stringent legal criteria. These criteria are beyond novelty and inventiveness, including clarity of scope, technical accuracy, language precision, and legal robustness. We assess various large language models (LLMs) through professional human evaluation, including general LLMs with different sizes and architectures, text revision models, and domain-specific models. Our results indicate that LLMs often bring ineffective edits that deviate from the target revisions. In addition, domain-specific models and the method of fine-tuning show promising results. Notably, GPT-4 outperforms other tested LLMs, but further revisions are still necessary to reach the examination standard. Furthermore, we demonstrate the inconsistency between automated and human evaluation results, suggesting that GPT-4-based automated evaluation has the highest correlation with human judgment. This dataset, along with our preliminary empirical research, offers invaluable insights for further exploration in patent claim revision.
Read, Revise, Repeat: A System Demonstration for Human-in-the-loop Iterative Text Revision
Revision is an essential part of the human writing process. It tends to be strategic, adaptive, and, more importantly, iterative in nature. Despite the success of large language models on text revision tasks, they are limited to non-iterative, one-shot revisions. Examining and evaluating the capability of large language models for making continuous revisions and collaborating with human writers is a critical step towards building effective writing assistants. In this work, we present a human-in-the-loop iterative text revision system, Read, Revise, Repeat (R3), which aims at achieving high quality text revisions with minimal human efforts by reading model-generated revisions and user feedbacks, revising documents, and repeating human-machine interactions. In R3, a text revision model provides text editing suggestions for human writers, who can accept or reject the suggested edits. The accepted edits are then incorporated into the model for the next iteration of document revision. Writers can therefore revise documents iteratively by interacting with the system and simply accepting/rejecting its suggested edits until the text revision model stops making further revisions or reaches a predefined maximum number of revisions. Empirical experiments show that R3 can generate revisions with comparable acceptance rate to human writers at early revision depths, and the human-machine interaction can get higher quality revisions with fewer iterations and edits. The collected human-model interaction dataset and system code are available at https://github.com/vipulraheja/IteraTeR. Our system demonstration is available at https://youtu.be/lK08tIpEoaE.
Instruction-tuned Language Models are Better Knowledge Learners
In order for large language model (LLM)-based assistants to effectively adapt to evolving information needs, it must be possible to update their factual knowledge through continued training on new data. The standard recipe for doing so involves continued pre-training on new documents followed by instruction-tuning on question-answer (QA) pairs. However, we find that LLMs trained with this recipe struggle to answer questions, even though the perplexity of documents is minimized. We found that QA pairs are generally straightforward, while documents are more complex, weaving many factual statements together in an intricate manner. Therefore, we hypothesize that it is beneficial to expose LLMs to QA pairs before continued pre-training on documents so that the process of encoding knowledge from complex documents takes into account how this knowledge is accessed through questions. Based on this, we propose pre-instruction-tuning (PIT), a method that instruction-tunes on questions prior to training on documents. This contrasts with standard instruction-tuning, which learns how to extract knowledge after training on documents. Extensive experiments and ablation studies demonstrate that PIT significantly enhances the ability of LLMs to absorb knowledge from new documents, outperforming standard instruction-tuning by 17.8%.
AnyEdit: Edit Any Knowledge Encoded in Language Models
Large language models (LLMs) often produce incorrect or outdated information, necessitating efficient and precise knowledge updates. Current model editing methods, however, struggle with long-form knowledge in diverse formats, such as poetry, code snippets, and mathematical derivations. These limitations arise from their reliance on editing a single token's hidden state, a limitation we term "efficacy barrier". To solve this, we propose AnyEdit, a new autoregressive editing paradigm. It decomposes long-form knowledge into sequential chunks and iteratively edits the key token in each chunk, ensuring consistent and accurate outputs. Theoretically, we ground AnyEdit in the Chain Rule of Mutual Information, showing its ability to update any knowledge within LLMs. Empirically, it outperforms strong baselines by 21.5% on benchmarks including UnKEBench, AKEW, and our new EditEverything dataset for long-form diverse-formatted knowledge. Additionally, AnyEdit serves as a plug-and-play framework, enabling current editing methods to update knowledge with arbitrary length and format, significantly advancing the scope and practicality of LLM knowledge editing.
ASSET: A Dataset for Tuning and Evaluation of Sentence Simplification Models with Multiple Rewriting Transformations
In order to simplify a sentence, human editors perform multiple rewriting transformations: they split it into several shorter sentences, paraphrase words (i.e. replacing complex words or phrases by simpler synonyms), reorder components, and/or delete information deemed unnecessary. Despite these varied range of possible text alterations, current models for automatic sentence simplification are evaluated using datasets that are focused on a single transformation, such as lexical paraphrasing or splitting. This makes it impossible to understand the ability of simplification models in more realistic settings. To alleviate this limitation, this paper introduces ASSET, a new dataset for assessing sentence simplification in English. ASSET is a crowdsourced multi-reference corpus where each simplification was produced by executing several rewriting transformations. Through quantitative and qualitative experiments, we show that simplifications in ASSET are better at capturing characteristics of simplicity when compared to other standard evaluation datasets for the task. Furthermore, we motivate the need for developing better methods for automatic evaluation using ASSET, since we show that current popular metrics may not be suitable when multiple simplification transformations are performed.
Meltemi: The first open Large Language Model for Greek
We describe the development and capabilities of Meltemi 7B, the first open Large Language Model for the Greek language. Meltemi 7B has 7 billion parameters and is trained on a 40 billion token Greek corpus. For the development of Meltemi 7B, we adapt Mistral, by continuous pretraining on the Greek Corpus. Meltemi 7B contains up-to-date information up to September 2023. Furthermore, we have translated and curated a Greek instruction corpus, which has been used for the instruction-tuning of a chat model, named Meltemi 7B Instruct. Special care has been given to the alignment and the removal of toxic content for the Meltemi 7B Instruct. The developed models are evaluated on a broad set of collected evaluation corpora, and examples of prompts and responses are presented. Both Meltemi 7B and Meltemi 7B Instruct are available at https://huggingface.co/ilsp under the Apache 2.0 license.
CITING: Large Language Models Create Curriculum for Instruction Tuning
The recent advancement of large language models (LLMs) has been achieved through a combo of instruction tuning and human alignment. However, building manually crafted instruction datasets and performing human alignment become the bottleneck for scaling the development of LLMs. In this paper, we exploit the idea of leveraging AI models in lieu of humans as the teacher to train student LLMs. Our method is inspired by how human students refine their writing skills by following the rubrics and learning from the revisions offered by their tutors. Specifically, we employ a teacher LLM to create a curriculum for instruction tuning of the student LLM, namely Curriculum Instruction TunING (CITING). It encompasses two main steps: (1) the teacher LLM crafts the rubrics for evaluating the answers corresponding to various types of questions, and (2) the student LLM learns to follow the rubrics and perform self-correction from the revision made by the teacher. We further iteratively carry out it to embody the procedure of CITING. We compare CITING to a series of state-of-the-art baselines on four datasets. Our method demonstrates strong improvement in terms of articulate, in-depth, and comprehensive by GPT-4 evaluation. Specifically, it achieves an average winning rate of 79.4% over SFT, 73.4% over RLHF, 78.1% over RRHF, and 76.3% over RAFT, respectively.
Controlled Generation with Prompt Insertion for Natural Language Explanations in Grammatical Error Correction
In Grammatical Error Correction (GEC), it is crucial to ensure the user's comprehension of a reason for correction. Existing studies present tokens, examples, and hints as to the basis for correction but do not directly explain the reasons for corrections. Although methods that use Large Language Models (LLMs) to provide direct explanations in natural language have been proposed for various tasks, no such method exists for GEC. Generating explanations for GEC corrections involves aligning input and output tokens, identifying correction points, and presenting corresponding explanations consistently. However, it is not straightforward to specify a complex format to generate explanations, because explicit control of generation is difficult with prompts. This study introduces a method called controlled generation with Prompt Insertion (PI) so that LLMs can explain the reasons for corrections in natural language. In PI, LLMs first correct the input text, and then we automatically extract the correction points based on the rules. The extracted correction points are sequentially inserted into the LLM's explanation output as prompts, guiding the LLMs to generate explanations for the correction points. We also create an Explainable GEC (XGEC) dataset of correction reasons by annotating NUCLE, CoNLL2013, and CoNLL2014. Although generations from GPT-3 and ChatGPT using original prompts miss some correction points, the generation control using PI can explicitly guide to describe explanations for all correction points, contributing to improved performance in generating correction reasons.
GoLLIE: Annotation Guidelines improve Zero-Shot Information-Extraction
Large Language Models (LLMs) combined with instruction tuning have made significant progress when generalizing to unseen tasks. However, they have been less successful in Information Extraction (IE), lagging behind task-specific models. Typically, IE tasks are characterized by complex annotation guidelines which describe the task and give examples to humans. Previous attempts to leverage such information have failed, even with the largest models, as they are not able to follow the guidelines out-of-the-box. In this paper we propose GoLLIE (Guideline-following Large Language Model for IE), a model able to improve zero-shot results on unseen IE tasks by virtue of being fine-tuned to comply with annotation guidelines. Comprehensive evaluation empirically demonstrates that GoLLIE is able to generalize to and follow unseen guidelines, outperforming previous attempts at zero-shot information extraction. The ablation study shows that detailed guidelines is key for good results.
Learning to Model Editing Processes
Most existing sequence generation models produce outputs in one pass, usually left-to-right. However, this is in contrast with a more natural approach that humans use in generating content; iterative refinement and editing. Recent work has introduced edit-based models for various tasks (such as neural machine translation and text style transfer), but these generally model a single edit step. In this work, we propose modeling editing processes, modeling the whole process of iteratively generating sequences. We form a conceptual framework to describe the likelihood of multi-step edits, and describe neural models that can learn a generative model of sequences based on these multistep edits. We introduce baseline results and metrics on this task, finding that modeling editing processes improves performance on a variety of axes on both our proposed task and related downstream tasks compared to previous single-step models of edits.
Benchmarking Complex Instruction-Following with Multiple Constraints Composition
Instruction following is one of the fundamental capabilities of large language models (LLMs). As the ability of LLMs is constantly improving, they have been increasingly applied to deal with complex human instructions in real-world scenarios. Therefore, how to evaluate the ability of complex instruction-following of LLMs has become a critical research problem. Existing benchmarks mainly focus on modeling different types of constraints in human instructions while neglecting the composition of different constraints, which is an indispensable constituent in complex instructions. To this end, we propose ComplexBench, a benchmark for comprehensively evaluating the ability of LLMs to follow complex instructions composed of multiple constraints. We propose a hierarchical taxonomy for complex instructions, including 4 constraint types, 19 constraint dimensions, and 4 composition types, and manually collect a high-quality dataset accordingly. To make the evaluation reliable, we augment LLM-based evaluators with rules to effectively verify whether generated texts can satisfy each constraint and composition. Furthermore, we obtain the final evaluation score based on the dependency structure determined by different composition types. ComplexBench identifies significant deficiencies in existing LLMs when dealing with complex instructions with multiple constraints composition.
Self-Instruct: Aligning Language Model with Self Generated Instructions
Large "instruction-tuned" language models (finetuned to respond to instructions) have demonstrated a remarkable ability to generalize zero-shot to new tasks. Nevertheless, they depend heavily on human-written instruction data that is limited in quantity, diversity, and creativity, therefore hindering the generality of the tuned model. We introduce Self-Instruct, a framework for improving the instruction-following capabilities of pretrained language models by bootstrapping off its own generations. Our pipeline generates instruction, input, and output samples from a language model, then prunes them before using them to finetune the original model. Applying our method to vanilla GPT3, we demonstrate a 33% absolute improvement over the original model on Super-NaturalInstructions, on par with the performance of InstructGPT_001, which is trained with private user data and human annotations. For further evaluation, we curate a set of expert-written instructions for novel tasks, and show through human evaluation that tuning GPT3 with Self-Instruct outperforms using existing public instruction datasets by a large margin, leaving only a 5% absolute gap behind InstructGPT_001. Self-Instruct provides an almost annotation-free method for aligning pre-trained language models with instructions, and we release our large synthetic dataset to facilitate future studies on instruction tuning.
Emptying the Ocean with a Spoon: Should We Edit Models?
We call into question the recently popularized method of direct model editing as a means of correcting factual errors in LLM generations. We contrast model editing with three similar but distinct approaches that pursue better defined objectives: (1) retrieval-based architectures, which decouple factual memory from inference and linguistic capabilities embodied in LLMs; (2) concept erasure methods, which aim at preventing systemic bias in generated text; and (3) attribution methods, which aim at grounding generations into identified textual sources. We argue that direct model editing cannot be trusted as a systematic remedy for the disadvantages inherent to LLMs, and while it has proven potential in improving model explainability, it opens risks by reinforcing the notion that models can be trusted for factuality. We call for cautious promotion and application of model editing as part of the LLM deployment process, and for responsibly limiting the use cases of LLMs to those not relying on editing as a critical component.
To Revise or Not to Revise: Learning to Detect Improvable Claims for Argumentative Writing Support
Optimizing the phrasing of argumentative text is crucial in higher education and professional development. However, assessing whether and how the different claims in a text should be revised is a hard task, especially for novice writers. In this work, we explore the main challenges to identifying argumentative claims in need of specific revisions. By learning from collaborative editing behaviors in online debates, we seek to capture implicit revision patterns in order to develop approaches aimed at guiding writers in how to further improve their arguments. We systematically compare the ability of common word embedding models to capture the differences between different versions of the same text, and we analyze their impact on various types of writing issues. To deal with the noisy nature of revision-based corpora, we propose a new sampling strategy based on revision distance. Opposed to approaches from prior work, such sampling can be done without employing additional annotations and judgments. Moreover, we provide evidence that using contextual information and domain knowledge can further improve prediction results. How useful a certain type of context is, depends on the issue the claim is suffering from, though.
More efficient manual review of automatically transcribed tabular data
Machine learning methods have proven useful in transcribing historical data. However, results from even highly accurate methods require manual verification and correction. Such manual review can be time-consuming and expensive, therefore the objective of this paper was to make it more efficient. Previously, we used machine learning to transcribe 2.3 million handwritten occupation codes from the Norwegian 1950 census with high accuracy (97%). We manually reviewed the 90,000 (3%) codes with the lowest model confidence. We allocated those 90,000 codes to human reviewers, who used our annotation tool to review the codes. To assess reviewer agreement, some codes were assigned to multiple reviewers. We then analyzed the review results to understand the relationship between accuracy improvements and effort. Additionally, we interviewed the reviewers to improve the workflow. The reviewers corrected 62.8% of the labels and agreed with the model label in 31.9% of cases. About 0.2% of the images could not be assigned a label, while for 5.1% the reviewers were uncertain, or they assigned an invalid label. 9,000 images were independently reviewed by multiple reviewers, resulting in an agreement of 86.43% and disagreement of 8.96%. We learned that our automatic transcription is biased towards the most frequent codes, with a higher degree of misclassification for the lowest frequency codes. Our interview findings show that the reviewers did internal quality control and found our custom tool well-suited. So, only one reviewer is needed, but they should report uncertainty.
Model Editing at Scale leads to Gradual and Catastrophic Forgetting
Editing knowledge in large language models is an attractive capability to have which allows us to correct incorrectly learnt facts during pre-training, as well as update the model with an ever-growing list of new facts. While existing model editing techniques have shown promise, they are usually evaluated using metrics for reliability, specificity and generalization over one or few edits. We argue that for model editing to have practical utility, we must be able to make multiple edits to the same model. With this in mind, we evaluate the current model editing methods at scale, focusing on two state of the art methods: ROME and MEMIT. We find that as the model is edited sequentially with multiple facts, it continually forgets previously edited facts and the ability to perform downstream tasks. This forgetting happens in two phases -- an initial gradual but progressive forgetting phase followed by abrupt or catastrophic forgetting phase. Both gradual and catastrophic forgetting limit the usefulness of model editing methods at scale -- the former making model editing less effective as multiple edits are made to the model while the latter caps the scalability of such model editing methods. Our analysis also highlights other key limitations of ROME and MEMIT at scale. With our work, we push for the development and evaluation of model editing methods keeping scalability in mind.
Adposition and Case Supersenses v2.6: Guidelines for English
This document offers a detailed linguistic description of SNACS (Semantic Network of Adposition and Case Supersenses; Schneider et al., 2018), an inventory of 52 semantic labels ("supersenses") that characterize the use of adpositions and case markers at a somewhat coarse level of granularity, as demonstrated in the STREUSLE corpus (https://github.com/nert-nlp/streusle/ ; version 4.5 tracks guidelines version 2.6). Though the SNACS inventory aspires to be universal, this document is specific to English; documentation for other languages will be published separately. Version 2 is a revision of the supersense inventory proposed for English by Schneider et al. (2015, 2016) (henceforth "v1"), which in turn was based on previous schemes. The present inventory was developed after extensive review of the v1 corpus annotations for English, plus previously unanalyzed genitive case possessives (Blodgett and Schneider, 2018), as well as consideration of adposition and case phenomena in Hebrew, Hindi, Korean, and German. Hwang et al. (2017) present the theoretical underpinnings of the v2 scheme. Schneider et al. (2018) summarize the scheme, its application to English corpus data, and an automatic disambiguation task. Liu et al. (2021) offer an English Lexical Semantic Recognition tagger that includes SNACS labels in its output. This documentation can also be browsed alongside corpus data on the Xposition website (Gessler et al., 2022): http://www.xposition.org/
Cross-Task Generalization via Natural Language Crowdsourcing Instructions
Humans (e.g., crowdworkers) have a remarkable ability in solving different tasks, by simply reading textual instructions that define them and looking at a few examples. Despite the success of the conventional supervised learning on individual datasets, such models often struggle with generalization across tasks (e.g., a question-answering system cannot solve classification tasks). A long-standing challenge in AI is to build a model that learns a new task by understanding the human-readable instructions that define it. To study this, we introduce NATURAL INSTRUCTIONS, a dataset of 61 distinct tasks, their human-authored instructions, and 193k task instances (input-output pairs). The instructions are obtained from crowdsourcing instructions used to create existing NLP datasets and mapped to a unified schema. Using this meta-dataset, we measure cross-task generalization by training models on seen tasks and measuring generalization to the remaining unseen ones. We adopt generative pre-trained language models to encode task-specific instructions along with input and generate task output. Our results indicate that models benefit from instructions when evaluated in terms of generalization to unseen tasks (19% better for models utilizing instructions). These models, however, are far behind an estimated performance upperbound indicating significant room for more progress in this direction.