Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeSSP: Self-Supervised Post-training for Conversational Search
Conversational search has been regarded as the next-generation search paradigm. Constrained by data scarcity, most existing methods distill the well-trained ad-hoc retriever to the conversational retriever. However, these methods, which usually initialize parameters by query reformulation to discover contextualized dependency, have trouble in understanding the dialogue structure information and struggle with contextual semantic vanishing. In this paper, we propose \fullmodel (\model) which is a new post-training paradigm with three self-supervised tasks to efficiently initialize the conversational search model to enhance the dialogue structure and contextual semantic understanding. Furthermore, the \model can be plugged into most of the existing conversational models to boost their performance. To verify the effectiveness of our proposed method, we apply the conversational encoder post-trained by \model on the conversational search task using two benchmark datasets: CAsT-19 and CAsT-20. Extensive experiments that our \model can boost the performance of several existing conversational search methods. Our source code is available at https://github.com/morecry/SSP.
JARVIS-VLA: Post-Training Large-Scale Vision Language Models to Play Visual Games with Keyboards and Mouse
Recently, action-based decision-making in open-world environments has gained significant attention. Visual Language Action (VLA) models, pretrained on large-scale web datasets, have shown promise in decision-making tasks. However, previous work has primarily focused on action post-training, often neglecting enhancements to the foundational model itself. In response, we introduce a novel approach, Act from Visual Language Post-Training, which refines Visual Language Models (VLMs) through visual and linguistic guidance in a self-supervised manner. This enhancement improves the models' capabilities in world knowledge, visual recognition, and spatial grounding in open-world environments. Following the above post-training paradigms, we obtain the first VLA models in Minecraft that can follow human instructions on over 1k different atomic tasks, including crafting, smelting, cooking, mining, and killing. Our experiments demonstrate that post-training on non-trajectory tasks leads to a significant 40% improvement over the best agent baseline on a diverse set of atomic tasks. Furthermore, we demonstrate that our approach surpasses traditional imitation learning-based policies in Minecraft, achieving state-of-the-art performance. We have open-sourced the code, models, and datasets to foster further research. The project page can be found in https://craftjarvis.github.io/JarvisVLA.
Interactive Post-Training for Vision-Language-Action Models
We introduce RIPT-VLA, a simple and scalable reinforcement-learning-based interactive post-training paradigm that fine-tunes pretrained Vision-Language-Action (VLA) models using only sparse binary success rewards. Existing VLA training pipelines rely heavily on offline expert demonstration data and supervised imitation, limiting their ability to adapt to new tasks and environments under low-data regimes. RIPT-VLA addresses this by enabling interactive post-training with a stable policy optimization algorithm based on dynamic rollout sampling and leave-one-out advantage estimation. RIPT-VLA has the following characteristics. First, it applies to various VLA models, resulting in an improvement on the lightweight QueST model by 21.2%, and the 7B OpenVLA-OFT model to an unprecedented 97.5% success rate. Second, it is computationally efficient and data-efficient: with only one demonstration, RIPT-VLA enables an unworkable SFT model (4%) to succeed with a 97% success rate within 15 iterations. Furthermore, we demonstrate that the policy learned by RIPT-VLA generalizes across different tasks and scenarios and is robust to the initial state context. These results highlight RIPT-VLA as a practical and effective paradigm for post-training VLA models through minimal supervision.
Visual Jigsaw Post-Training Improves MLLMs
Reinforcement learning based post-training has recently emerged as a powerful paradigm for enhancing the alignment and reasoning capabilities of multimodal large language models (MLLMs). While vision-centric post-training is crucial for enhancing MLLMs' intrinsic understanding of visual signals, current post-training paradigms are predominantly text-centric, where dense visual inputs are only leveraged to extract sparse cues for text-based reasoning. There exist a few approaches in this direction, however, they often still rely on text as an intermediate mediator or introduce additional visual generative designs. In this work, we introduce Visual Jigsaw, a generic self-supervised post-training framework designed to strengthen visual understanding in MLLMs. Visual Jigsaw is formulated as a general ordering task: visual inputs are partitioned, shuffled, and the model must reconstruct the visual information by producing the correct permutation in natural language. This naturally aligns with reinforcement learning from verifiable rewards (RLVR), requires no additional visual generative components, and derives its supervisory signal automatically without any annotations. We instantiate Visual Jigsaw across three visual modalities, including images, videos, and 3D data. Extensive experiments demonstrate substantial improvements in fine-grained perception, temporal reasoning, and 3D spatial understanding. Our findings highlight the potential of self-supervised vision-centric tasks in post-training MLLMs and aim to inspire further research on vision-centric pretext designs. Project Page: https://penghao-wu.github.io/visual_jigsaw/
Measuring Audio's Impact on Correctness: Audio-Contribution-Aware Post-Training of Large Audio Language Models
Large Audio Language Models (LALMs) represent an important frontier in multimodal AI, addressing diverse audio tasks. Recently, post-training of LALMs has received increasing attention due to significant performance improvements over foundation models. While single-stage post-training such as reinforcement learning (RL) has demonstrated promising results, multi-stage approaches such as supervised fine-tuning (SFT) followed by RL remain suboptimal. The allocation of data across multiple training stages to maximize LALM capabilities has not been fully explored, and large-scale, high-quality datasets for such research are also lacking. To address these problems, we firstly present AudioMCQ, a comprehensive audio multiple-choice question dataset comprising 571k samples with two kinds of chain-of-thought annotations. Secondly, we investigate the prevalent zero audio-contribution phenomenon in LALMs, where models derive correct answers solely from textual information without processing audio content. We propose Audio-Contribution Filtering to partition data into weak and strong audio-contribution subsets. Based on these insights, we develop two effective post-training paradigms: Weak-to-Strong (SFT on weak audio-contribution data followed by RL on strong audio-contribution data) and Mixed-to-Strong (SFT on mixed audio-contribution data followed by RL on strong audio-contribution data). We achieve first place in the DCASE 2025 Audio-Question-Answering challenge by using AudioMCQ. Additionally, leveraging our dataset with different training strategies, we achieve 78.2\% on MMAU-test-mini, 75.6\% on MMAU, 67.1\% on MMAR, and 70.7\% on MMSU, establishing new state-of-the-art performance across these benchmarks.
Reinforcement Fine-Tuning Naturally Mitigates Forgetting in Continual Post-Training
Continual post-training (CPT) is a popular and effective technique for adapting foundation models like multimodal large language models to specific and ever-evolving downstream tasks. While existing research has primarily concentrated on methods like data replay, model expansion, or parameter regularization, the fundamental role of the learning paradigm within CPT remains largely unexplored. This paper presents a comparative analysis of two core post-training paradigms: supervised fine-tuning (SFT) and reinforcement fine-tuning (RFT), investigating their respective impacts on knowledge retention during CPT. Our experiments are conducted on a benchmark comprising seven diverse multimodal tasks, utilizing Qwen2.5-VL-7B-Instruct as the base model for continual post-training. The investigation yields two significant findings: (1) When continuously learning on downstream tasks, SFT leads to catastrophic forgetting of previously learned tasks. In contrast, RFT inherently preserves prior knowledge and achieve performance comparable to multi-task training. (2) RFT successfully protects and even enhances the model's general knowledge on standard benchmarks (e.g., MMMU and MMLU-Pro). Conversely, SFT degrades general model capabilities severely. Further analysis shows that explicit mechanisms, such as KL penalty and chain-of-thought reasoning, are not the primary factors. Instead, we find that the implicit regularization inherent to RFT is a key factor in mitigating forgetting. Finally, we propose a rollout-based instance filtering algorithm to improve the stability and efficiency of RFT. Our comprehensive study demonstrates the superiority of RFT as a robust paradigm for continual post-training.
Inversion-DPO: Precise and Efficient Post-Training for Diffusion Models
Recent advancements in diffusion models (DMs) have been propelled by alignment methods that post-train models to better conform to human preferences. However, these approaches typically require computation-intensive training of a base model and a reward model, which not only incurs substantial computational overhead but may also compromise model accuracy and training efficiency. To address these limitations, we propose Inversion-DPO, a novel alignment framework that circumvents reward modeling by reformulating Direct Preference Optimization (DPO) with DDIM inversion for DMs. Our method conducts intractable posterior sampling in Diffusion-DPO with the deterministic inversion from winning and losing samples to noise and thus derive a new post-training paradigm. This paradigm eliminates the need for auxiliary reward models or inaccurate appromixation, significantly enhancing both precision and efficiency of training. We apply Inversion-DPO to a basic task of text-to-image generation and a challenging task of compositional image generation. Extensive experiments show substantial performance improvements achieved by Inversion-DPO compared to existing post-training methods and highlight the ability of the trained generative models to generate high-fidelity compositionally coherent images. For the post-training of compostitional image geneation, we curate a paired dataset consisting of 11,140 images with complex structural annotations and comprehensive scores, designed to enhance the compositional capabilities of generative models. Inversion-DPO explores a new avenue for efficient, high-precision alignment in diffusion models, advancing their applicability to complex realistic generation tasks. Our code is available at https://github.com/MIGHTYEZ/Inversion-DPO
Advancing Math Reasoning in Language Models: The Impact of Problem-Solving Data, Data Synthesis Methods, and Training Stages
Advancements in LLMs have significantly expanded their capabilities across various domains. However, mathematical reasoning remains a challenging area, prompting the development of math-specific LLMs. These models typically follow a two-stage training paradigm: pre-training with math-related corpora and post-training with problem datasets for SFT. Despite these efforts, the improvements in mathematical reasoning achieved through continued pre-training (CPT) are often less significant compared to those obtained via SFT. This study addresses this discrepancy by exploring alternative strategies during the pre-training phase, focusing on the use of problem-solving data over general mathematical corpora. We investigate three primary research questions: (1) Can problem-solving data enhance the model's mathematical reasoning capabilities more effectively than general mathematical corpora during CPT? (2) Are synthetic data from the same source equally effective, and which synthesis methods are most efficient? (3) How do the capabilities developed from the same problem-solving data differ between the CPT and SFT stages, and what factors contribute to these differences? Our findings indicate that problem-solving data significantly enhances the model's mathematical capabilities compared to general mathematical corpora. We also identify effective data synthesis methods, demonstrating that the tutorship amplification synthesis method achieves the best performance. Furthermore, while SFT facilitates instruction-following abilities, it underperforms compared to CPT with the same data, which can be partially attributed to its poor learning capacity for hard multi-step problem-solving data. These insights provide valuable guidance for optimizing the mathematical reasoning capabilities of LLMs, culminating in our development of a powerful mathematical base model called JiuZhang-8B.
RLVR-World: Training World Models with Reinforcement Learning
World models predict state transitions in response to actions and are increasingly developed across diverse modalities. However, standard training objectives such as maximum likelihood estimation (MLE) often misalign with task-specific goals of world models, i.e., transition prediction metrics like accuracy or perceptual quality. In this paper, we present RLVR-World, a unified framework that leverages reinforcement learning with verifiable rewards (RLVR) to directly optimize world models for such metrics. Despite formulating world modeling as autoregressive prediction of tokenized sequences, RLVR-World evaluates metrics of decoded predictions as verifiable rewards. We demonstrate substantial performance gains on both language- and video-based world models across domains, including text games, web navigation, and robot manipulation. Our work indicates that, beyond recent advances in reasoning language models, RLVR offers a promising post-training paradigm for enhancing the utility of generative models more broadly.
ViSurf: Visual Supervised-and-Reinforcement Fine-Tuning for Large Vision-and-Language Models
Typical post-training paradigms for Large Vision-and-Language Models (LVLMs) include Supervised Fine-Tuning (SFT) and Reinforcement Learning with Verifiable Rewards (RLVR). SFT leverages external guidance to inject new knowledge, whereas RLVR utilizes internal reinforcement to enhance reasoning capabilities and overall performance. However, our analysis reveals that SFT often leads to sub-optimal performance, while RLVR struggles with tasks that exceed the model's internal knowledge base. To address these limitations, we propose ViSurf (Visual Supervised-and-Reinforcement Fine-Tuning), a unified post-training paradigm that integrates the strengths of both SFT and RLVR within a single stage. We analyze the derivation of the SFT and RLVR objectives to establish the ViSurf objective, providing a unified perspective on these two paradigms. The core of ViSurf involves injecting ground-truth labels into the RLVR rollouts, thereby providing simultaneous external supervision and internal reinforcement. Furthermore, we introduce three novel reward control strategies to stabilize and optimize the training process. Extensive experiments across several diverse benchmarks demonstrate the effectiveness of ViSurf, outperforming both individual SFT, RLVR, and two-stage SFT \textrightarrow RLVR. In-depth analysis corroborates these findings, validating the derivation and design principles of ViSurf.
Play to Generalize: Learning to Reason Through Game Play
Developing generalizable reasoning capabilities in multimodal large language models (MLLMs) remains challenging. Motivated by cognitive science literature suggesting that gameplay promotes transferable cognitive skills, we propose a novel post-training paradigm, Visual Game Learning, or ViGaL, where MLLMs develop out-of-domain generalization of multimodal reasoning through playing arcade-like games. Specifically, we show that post-training a 7B-parameter MLLM via reinforcement learning (RL) on simple arcade-like games, e.g. Snake, significantly enhances its downstream performance on multimodal math benchmarks like MathVista, and on multi-discipline questions like MMMU, without seeing any worked solutions, equations, or diagrams during RL, suggesting the capture of transferable reasoning skills. Remarkably, our model outperforms specialist models tuned on multimodal reasoning data in multimodal reasoning benchmarks, while preserving the base model's performance on general visual benchmarks, a challenge where specialist models often fall short. Our findings suggest a new post-training paradigm: synthetic, rule-based games can serve as controllable and scalable pre-text tasks that unlock generalizable multimodal reasoning abilities in MLLMs.
VLA-RFT: Vision-Language-Action Reinforcement Fine-tuning with Verified Rewards in World Simulators
Vision-Language-Action (VLA) models enable embodied decision-making but rely heavily on imitation learning, leading to compounding errors and poor robustness under distribution shift. Reinforcement learning (RL) can mitigate these issues yet typically demands costly real-world interactions or suffers from sim-to-real gaps. We introduce VLA-RFT, a reinforcement fine-tuning framework that leverages a data-driven world model as a controllable simulator. Trained from real interaction data, the simulator predicts future visual observations conditioned on actions, allowing policy rollouts with dense, trajectory-level rewards derived from goal-achieving references. This design delivers an efficient and action-aligned learning signal, drastically lowering sample requirements. With fewer than 400 fine-tuning steps, VLA-RFT surpasses strong supervised baselines and achieves greater efficiency than simulator-based RL. Moreover, it exhibits strong robustness under perturbed conditions, sustaining stable task execution. Our results establish world-model-based RFT as a practical post-training paradigm to enhance the generalization and robustness of VLA models. For more details, please refer to https://vla-rft.github.io/.
Think-RM: Enabling Long-Horizon Reasoning in Generative Reward Models
Reinforcement learning from human feedback (RLHF) has become a powerful post-training paradigm for aligning large language models with human preferences. A core challenge in RLHF is constructing accurate reward signals, where the conventional Bradley-Terry reward models (BT RMs) often suffer from sensitivity to data size and coverage, as well as vulnerability to reward hacking. Generative reward models (GenRMs) offer a more robust alternative by generating chain-of-thought (CoT) rationales followed by a final reward. However, existing GenRMs rely on shallow, vertically scaled reasoning, limiting their capacity to handle nuanced or complex (e.g., reasoning-intensive) tasks. Moreover, their pairwise preference outputs are incompatible with standard RLHF algorithms that require pointwise reward signals. In this work, we introduce Think-RM, a training framework that enables long-horizon reasoning in GenRMs by modeling an internal thinking process. Rather than producing structured, externally provided rationales, Think-RM generates flexible, self-guided reasoning traces that support advanced capabilities such as self-reflection, hypothetical reasoning, and divergent reasoning. To elicit these reasoning abilities, we first warm-up the models by supervised fine-tuning (SFT) over long CoT data. We then further improve the model's long-horizon abilities by rule-based reinforcement learning (RL). In addition, we propose a novel pairwise RLHF pipeline that directly optimizes policies using pairwise preference rewards, eliminating the need for pointwise reward conversion and enabling more effective use of Think-RM outputs. Experiments show that Think-RM achieves state-of-the-art results on RM-Bench, outperforming both BT RM and vertically scaled GenRM by 8%. When combined with our pairwise RLHF pipeline, it demonstrates superior end-policy performance compared to traditional approaches.
Shuffle-R1: Efficient RL framework for Multimodal Large Language Models via Data-centric Dynamic Shuffle
Reinforcement learning (RL) has emerged as an effective post-training paradigm for enhancing the reasoning capabilities of multimodal large language model (MLLM). However, current RL pipelines often suffer from training inefficiencies caused by two underexplored issues: Advantage Collapsing, where most advantages in a batch concentrate near zero, and Rollout Silencing, where the proportion of rollouts contributing non-zero gradients diminishes over time. These issues lead to suboptimal gradient updates and hinder long-term learning efficiency. To address these issues, we propose Shuffle-R1, a simple yet principled framework that improves RL fine-tuning efficiency by dynamically restructuring trajectory sampling and batch composition. It introduces (1) Pairwise Trajectory Sampling, which selects high-contrast trajectories with large advantages to improve gradient signal quality, and (2) Advantage-based Trajectory Shuffle, which increases exposure of valuable rollouts through informed batch reshuffling. Experiments across multiple reasoning benchmarks show that our framework consistently outperforms strong RL baselines with minimal overhead. These results highlight the importance of data-centric adaptations for more efficient RL training in MLLM.
On-Policy RL Meets Off-Policy Experts: Harmonizing Supervised Fine-Tuning and Reinforcement Learning via Dynamic Weighting
Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL) are two prominent post-training paradigms for refining the capabilities and aligning the behavior of Large Language Models (LLMs). Existing approaches that integrate SFT and RL often face the risk of disrupting established model patterns and inducing overfitting to expert data. To address this, we present a novel investigation into the unified view of SFT and RL through an off-policy versus on-policy lens. We propose CHORD, a framework for the Controllable Harmonization of On- and Off-Policy Reinforcement Learning via Dynamic Weighting, which reframes SFT not as a separate stage but as a dynamically weighted auxiliary objective within the on-policy RL process. Based on an analysis of off-policy expert data's influence at both holistic and granular levels, we incorporate a dual-control mechanism in CHORD. Specifically, the framework first employs a global coefficient to holistically guide the transition from off-policy imitation to on-policy exploration, and then applies a token-wise weighting function that enables granular learning from expert tokens, which preserves on-policy exploration and mitigates disruption from off-policy data. We conduct extensive experiments on widely used benchmarks, providing empirical evidence that CHORD achieves a stable and efficient learning process. By effectively harmonizing off-policy expert data with on-policy exploration, CHORD demonstrates significant improvements over baselines. We release the implementation at https://github.com/modelscope/Trinity-RFT/tree/main/examples/mix_chord to inspire further research.
One-shot Entropy Minimization
We trained 13,440 large language models and found that entropy minimization requires only a single unlabeled data and 10 steps optimization to achieve performance improvements comparable to or even greater than those obtained using thousands of data and carefully designed rewards in rule-based reinforcement learning. This striking result may prompt a rethinking of post-training paradigms for large language models. Our code is avaliable at https://github.com/zitian-gao/one-shot-em.
ACE++: Instruction-Based Image Creation and Editing via Context-Aware Content Filling
We report ACE++, an instruction-based diffusion framework that tackles various image generation and editing tasks. Inspired by the input format for the inpainting task proposed by FLUX.1-Fill-dev, we improve the Long-context Condition Unit (LCU) introduced in ACE and extend this input paradigm to any editing and generation tasks. To take full advantage of image generative priors, we develop a two-stage training scheme to minimize the efforts of finetuning powerful text-to-image diffusion models like FLUX.1-dev. In the first stage, we pre-train the model using task data with the 0-ref tasks from the text-to-image model. There are many models in the community based on the post-training of text-to-image foundational models that meet this training paradigm of the first stage. For example, FLUX.1-Fill-dev deals primarily with painting tasks and can be used as an initialization to accelerate the training process. In the second stage, we finetune the above model to support the general instructions using all tasks defined in ACE. To promote the widespread application of ACE++ in different scenarios, we provide a comprehensive set of models that cover both full finetuning and lightweight finetuning, while considering general applicability and applicability in vertical scenarios. The qualitative analysis showcases the superiority of ACE++ in terms of generating image quality and prompt following ability.
The Perfect Blend: Redefining RLHF with Mixture of Judges
Reinforcement learning from human feedback (RLHF) has become the leading approach for fine-tuning large language models (LLM). However, RLHF has limitations in multi-task learning (MTL) due to challenges of reward hacking and extreme multi-objective optimization (i.e., trade-off of multiple and/or sometimes conflicting objectives). Applying RLHF for MTL currently requires careful tuning of the weights for reward model and data combinations. This is often done via human intuition and does not generalize. In this work, we introduce a novel post-training paradigm which we called Constrained Generative Policy Optimization (CGPO). The core of CGPO is Mixture of Judges (MoJ) with cost-efficient constrained policy optimization with stratification, which can identify the perfect blend in RLHF in a principled manner. It shows strong empirical results with theoretical guarantees, does not require extensive hyper-parameter tuning, and is plug-and-play in common post-training pipelines. Together, this can detect and mitigate reward hacking behaviors while reaching a pareto-optimal point across an extremely large number of objectives. Our empirical evaluations demonstrate that CGPO significantly outperforms standard RLHF algorithms like PPO and DPO across various tasks including general chat, STEM questions, instruction following, and coding. Specifically, CGPO shows improvements of 7.4% in AlpacaEval-2 (general chat), 12.5% in Arena-Hard (STEM & reasoning), and consistent gains in other domains like math and coding. Notably, PPO, while commonly used, is prone to severe reward hacking in popular coding benchmarks, which CGPO successfully addresses. This breakthrough in RLHF not only tackles reward hacking and extreme multi-objective optimization challenges but also advances the state-of-the-art in aligning general-purpose LLMs for diverse applications.
Beyond Reasoning Gains: Mitigating General Capabilities Forgetting in Large Reasoning Models
Reinforcement learning with verifiable rewards (RLVR) has delivered impressive gains in mathematical and multimodal reasoning and has become a standard post-training paradigm for contemporary language and vision-language models. However, the RLVR recipe introduces a significant risk of capability regression, where models forget foundational skills after prolonged training without employing regularization strategies. We empirically confirm this concern, observing that open-source reasoning models suffer performance degradation on core capabilities such as perception and faithfulness. While imposing regularization terms like KL divergence can help prevent deviation from the base model, these terms are calculated on the current task, thus they do not guarantee broader knowledge. Meanwhile, commonly used experience replay across heterogeneous domains makes it nontrivial to decide how much training focus each objective should receive. To address this, we propose RECAP-a replay strategy with dynamic objective reweighting for general knowledge preservation. Our reweighting mechanism adapts in an online manner using short-horizon signals of convergence and instability, shifting the post-training focus away from saturated objectives and toward underperforming or volatile ones. Our method is end-to-end and readily applicable to existing RLVR pipelines without training additional models or heavy tuning. Extensive experiments on benchmarks based on Qwen2.5-VL-3B and Qwen2.5-VL-7B demonstrate the effectiveness of our method, which not only preserves general capabilities but also improves reasoning by enabling more flexible trade-offs among in-task rewards.
Being-H0: Vision-Language-Action Pretraining from Large-Scale Human Videos
We introduce Being-H0, a dexterous Vision-Language-Action model (VLA) trained on large-scale human videos. Existing VLAs struggle with complex manipulation tasks requiring high dexterity and generalize poorly to novel scenarios and tasks, primarily due to their reliance on synthetic data with significant sim-to-real gaps or teleoperated demonstrations lacking scale and diversity. To address this data bottleneck, we propose leveraging human hands as a foundation manipulator, capitalizing on the rich dexterity and scalability present in web data. Our approach centers on physical instruction tuning, a novel training paradigm that combines large-scale VLA pretraining from human videos, physical space alignment for 3D reasoning, and post-training adaptation for robotic tasks. Additionally, we introduce a part-level motion tokenization method which achieves millimeter-level reconstruction accuracy to model precise hand trajectories for action learning. To support our proposed paradigm, we further develop a comprehensive data curation pipeline that integrates heterogeneous sources -- including motion capture, VR, and RGB-only videos -- into a large-scale dataset with millions of motion-based instructional instances. We empirically show the excellence of Being-H0 in hand motion generation and instruction following, and it also scales well with model and data sizes. Importantly, we observe the expected gains of Being-H0 in real-world robotic manipulation as physical instruction tuning is applied. More details are available at https://beingbeyond.github.io/Being-H0.
UFT: Unifying Supervised and Reinforcement Fine-Tuning
Post-training has demonstrated its importance in enhancing the reasoning capabilities of large language models (LLMs). The primary post-training methods can be categorized into supervised fine-tuning (SFT) and reinforcement fine-tuning (RFT). SFT is efficient and well-suited for small language models, but it may lead to overfitting and limit the reasoning abilities of larger models. In contrast, RFT generally yields better generalization but depends heavily on the strength of the base model. To address the limitations of SFT and RFT, we propose Unified Fine-Tuning (UFT), a novel post-training paradigm that unifies SFT and RFT into a single, integrated process. UFT enables the model to effectively explore solutions while incorporating informative supervision signals, bridging the gap between memorizing and thinking underlying existing methods. Notably, UFT outperforms both SFT and RFT in general, regardless of model sizes. Furthermore, we theoretically prove that UFT breaks RFT's inherent exponential sample complexity bottleneck, showing for the first time that unified training can exponentially accelerate convergence on long-horizon reasoning tasks.
Boosting the Generalization and Reasoning of Vision Language Models with Curriculum Reinforcement Learning
While state-of-the-art vision-language models (VLMs) have demonstrated remarkable capabilities in complex visual-text tasks, their success heavily relies on massive model scaling, limiting their practical deployment. Small-scale VLMs offer a more practical alternative but face significant challenges when trained with traditional supervised fine-tuning (SFT), particularly in two aspects: out-of-domain (OOD) generalization and reasoning abilities, which significantly lags behind the contemporary Large language models (LLMs). To address these challenges, we propose Curriculum Reinforcement Finetuning (Curr-ReFT), a novel post-training paradigm specifically designed for small-scale VLMs. Inspired by the success of reinforcement learning in LLMs, Curr-ReFT comprises two sequential stages: (1) Curriculum Reinforcement Learning, which ensures steady progression of model capabilities through difficulty-aware reward design, transitioning from basic visual perception to complex reasoning tasks; and (2) Rejected Sampling-based Self-improvement, which maintains the fundamental capabilities of VLMs through selective learning from high-quality multimodal and language examples. Extensive experiments demonstrate that models trained with Curr-ReFT paradigm achieve state-of-the-art performance across various visual tasks in both in-domain and out-of-domain settings. Moreover, our Curr-ReFT enhanced 3B model matches the performance of 32B-parameter models, demonstrating that efficient training paradigms can effectively bridge the gap between small and large models.
TimeHC-RL: Temporal-aware Hierarchical Cognitive Reinforcement Learning for Enhancing LLMs' Social Intelligence
Recently, Large Language Models (LLMs) have made significant progress in IQ-related domains that require careful thinking, such as mathematics and coding. However, enhancing LLMs' cognitive development in social domains, particularly from a post-training perspective, remains underexplored. Recognizing that the social world follows a distinct timeline and requires a richer blend of cognitive modes (from intuitive reactions (System 1) and surface-level thinking to deliberate thinking (System 2)) than mathematics, which primarily relies on System 2 cognition (careful, step-by-step reasoning), we introduce Temporal-aware Hierarchical Cognitive Reinforcement Learning (TimeHC-RL) for enhancing LLMs' social intelligence. In our experiments, we systematically explore improving LLMs' social intelligence and validate the effectiveness of the TimeHC-RL method, through five other post-training paradigms and two test-time intervention paradigms on eight datasets with diverse data patterns. Experimental results reveal the superiority of our proposed TimeHC-RL method compared to the widely adopted System 2 RL method. It gives the 7B backbone model wings, enabling it to rival the performance of advanced models like DeepSeek-R1 and OpenAI-O3. Additionally, the systematic exploration from post-training and test-time interventions perspectives to improve LLMs' social intelligence has uncovered several valuable insights.
InternVL3: Exploring Advanced Training and Test-Time Recipes for Open-Source Multimodal Models
We introduce InternVL3, a significant advancement in the InternVL series featuring a native multimodal pre-training paradigm. Rather than adapting a text-only large language model (LLM) into a multimodal large language model (MLLM) that supports visual inputs, InternVL3 jointly acquires multimodal and linguistic capabilities from both diverse multimodal data and pure-text corpora during a single pre-training stage. This unified training paradigm effectively addresses the complexities and alignment challenges commonly encountered in conventional post-hoc training pipelines for MLLMs. To further improve performance and scalability, InternVL3 incorporates variable visual position encoding (V2PE) to support extended multimodal contexts, employs advanced post-training techniques such as supervised fine-tuning (SFT) and mixed preference optimization (MPO), and adopts test-time scaling strategies alongside an optimized training infrastructure. Extensive empirical evaluations demonstrate that InternVL3 delivers superior performance across a wide range of multi-modal tasks. In particular, InternVL3-78B achieves a score of 72.2 on the MMMU benchmark, setting a new state-of-the-art among open-source MLLMs. Its capabilities remain highly competitive with leading proprietary models, including ChatGPT-4o, Claude 3.5 Sonnet, and Gemini 2.5 Pro, while also maintaining strong pure-language proficiency. In pursuit of open-science principles, we will publicly release both the training data and model weights to foster further research and development in next-generation MLLMs.
VideoMAE V2: Scaling Video Masked Autoencoders with Dual Masking
Scale is the primary factor for building a powerful foundation model that could well generalize to a variety of downstream tasks. However, it is still challenging to train video foundation models with billions of parameters. This paper shows that video masked autoencoder (VideoMAE) is a scalable and general self-supervised pre-trainer for building video foundation models. We scale the VideoMAE in both model and data with a core design. Specifically, we present a dual masking strategy for efficient pre-training, with an encoder operating on a subset of video tokens and a decoder processing another subset of video tokens. Although VideoMAE is very efficient due to high masking ratio in encoder, masking decoder can still further reduce the overall computational cost. This enables the efficient pre-training of billion-level models in video. We also use a progressive training paradigm that involves an initial pre-training on a diverse multi-sourced unlabeled dataset, followed by a post-pre-training on a mixed labeled dataset. Finally, we successfully train a video ViT model with a billion parameters, which achieves a new state-of-the-art performance on the datasets of Kinetics (90.0% on K400 and 89.9% on K600) and Something-Something (68.7% on V1 and 77.0% on V2). In addition, we extensively verify the pre-trained video ViT models on a variety of downstream tasks, demonstrating its effectiveness as a general video representation learner. The code and model is available at https://github.com/OpenGVLab/VideoMAEv2.
Post-training Quantization on Diffusion Models
Denoising diffusion (score-based) generative models have recently achieved significant accomplishments in generating realistic and diverse data. These approaches define a forward diffusion process for transforming data into noise and a backward denoising process for sampling data from noise. Unfortunately, the generation process of current denoising diffusion models is notoriously slow due to the lengthy iterative noise estimations, which rely on cumbersome neural networks. It prevents the diffusion models from being widely deployed, especially on edge devices. Previous works accelerate the generation process of diffusion model (DM) via finding shorter yet effective sampling trajectories. However, they overlook the cost of noise estimation with a heavy network in every iteration. In this work, we accelerate generation from the perspective of compressing the noise estimation network. Due to the difficulty of retraining DMs, we exclude mainstream training-aware compression paradigms and introduce post-training quantization (PTQ) into DM acceleration. However, the output distributions of noise estimation networks change with time-step, making previous PTQ methods fail in DMs since they are designed for single-time step scenarios. To devise a DM-specific PTQ method, we explore PTQ on DM in three aspects: quantized operations, calibration dataset, and calibration metric. We summarize and use several observations derived from all-inclusive investigations to formulate our method, which especially targets the unique multi-time-step structure of DMs. Experimentally, our method can directly quantize full-precision DMs into 8-bit models while maintaining or even improving their performance in a training-free manner. Importantly, our method can serve as a plug-and-play module on other fast-sampling methods, e.g., DDIM. The code is available at https://github.com/42Shawn/PTQ4DM .
Sailing AI by the Stars: A Survey of Learning from Rewards in Post-Training and Test-Time Scaling of Large Language Models
Recent developments in Large Language Models (LLMs) have shifted from pre-training scaling to post-training and test-time scaling. Across these developments, a key unified paradigm has arisen: Learning from Rewards, where reward signals act as the guiding stars to steer LLM behavior. It has underpinned a wide range of prevalent techniques, such as reinforcement learning (in RLHF, DPO, and GRPO), reward-guided decoding, and post-hoc correction. Crucially, this paradigm enables the transition from passive learning from static data to active learning from dynamic feedback. This endows LLMs with aligned preferences and deep reasoning capabilities. In this survey, we present a comprehensive overview of the paradigm of learning from rewards. We categorize and analyze the strategies under this paradigm across training, inference, and post-inference stages. We further discuss the benchmarks for reward models and the primary applications. Finally we highlight the challenges and future directions. We maintain a paper collection at https://github.com/bobxwu/learning-from-rewards-llm-papers.
FIMA-Q: Post-Training Quantization for Vision Transformers by Fisher Information Matrix Approximation
Post-training quantization (PTQ) has stood out as a cost-effective and promising model compression paradigm in recent years, as it avoids computationally intensive model retraining. Nevertheless, current PTQ methods for Vision Transformers (ViTs) still suffer from significant accuracy degradation, especially under low-bit quantization. To address these shortcomings, we analyze the prevailing Hessian-guided quantization loss, and uncover certain limitations of conventional Hessian approximations. By following the block-wise reconstruction framework, we propose a novel PTQ method for ViTs, dubbed FIMA-Q. Specifically, we firstly establish the connection between KL divergence and FIM, which enables fast computation of the quantization loss during reconstruction. We further propose an efficient FIM approximation method, namely DPLR-FIM, by employing the diagonal plus low-rank principle, and formulate the ultimate quantization loss. Our extensive experiments, conducted across various vision tasks with representative ViT-based architectures on public datasets, demonstrate that our method substantially promotes the accuracy compared to the state-of-the-art approaches, especially in the case of low-bit quantization. The source code is available at https://github.com/ShiheWang/FIMA-Q.
Transferable Post-training via Inverse Value Learning
As post-training processes utilize increasingly large datasets and base models continue to grow in size, the computational demands and implementation challenges of existing algorithms are escalating significantly. In this paper, we propose modeling the changes at the logits level during post-training using a separate neural network (i.e., the value network). After training this network on a small base model using demonstrations, this network can be seamlessly integrated with other pre-trained models during inference, enables them to achieve similar capability enhancements. We systematically investigate the best practices for this paradigm in terms of pre-training weights and connection schemes. We demonstrate that the resulting value network has broad transferability across pre-trained models of different parameter sizes within the same family, models undergoing continuous pre-training within the same family, and models with different vocabularies across families. In certain cases, it can achieve performance comparable to full-parameter fine-tuning. Furthermore, we explore methods to enhance the transferability of the value model and prevent overfitting to the base model used during training.
Unsupervised Post-Training for Multi-Modal LLM Reasoning via GRPO
Improving Multi-modal Large Language Models (MLLMs) in the post-training stage typically relies on supervised fine-tuning (SFT) or reinforcement learning (RL). However, these supervised methods require expensive and manually annotated multi-modal data--an ultimately unsustainable resource. While recent efforts have explored unsupervised post-training, their methods are complex and difficult to iterate. In this work, we are the first to investigate the use of GRPO, a stable and scalable online RL algorithm, for enabling continual self-improvement without any external supervision. We propose MM-UPT, a simple yet effective framework for unsupervised post-training of MLLMs. MM-UPT builds upon GRPO, replacing traditional reward signals with a self-rewarding mechanism based on majority voting over multiple sampled responses. Our experiments demonstrate that MM-UPT significantly improves the reasoning ability of Qwen2.5-VL-7B (e.g., 66.3 %rightarrow72.9 % on MathVista, 62.9 %rightarrow68.7 % on We-Math), using standard dataset without ground truth labels. MM-UPT also outperforms prior unsupervised baselines and even approaches the results of supervised GRPO. Furthermore, we show that incorporating synthetic questions, generated solely by MLLM itself, can boost performance as well, highlighting a promising approach for scalable self-improvement. Overall, MM-UPT offers a new paradigm for continual, autonomous enhancement of MLLMs in the absence of external supervision. Our code is available at https://github.com/waltonfuture/MM-UPT.
DC-Gen: Post-Training Diffusion Acceleration with Deeply Compressed Latent Space
Existing text-to-image diffusion models excel at generating high-quality images, but face significant efficiency challenges when scaled to high resolutions, like 4K image generation. While previous research accelerates diffusion models in various aspects, it seldom handles the inherent redundancy within the latent space. To bridge this gap, this paper introduces DC-Gen, a general framework that accelerates text-to-image diffusion models by leveraging a deeply compressed latent space. Rather than a costly training-from-scratch approach, DC-Gen uses an efficient post-training pipeline to preserve the quality of the base model. A key challenge in this paradigm is the representation gap between the base model's latent space and a deeply compressed latent space, which can lead to instability during direct fine-tuning. To overcome this, DC-Gen first bridges the representation gap with a lightweight embedding alignment training. Once the latent embeddings are aligned, only a small amount of LoRA fine-tuning is needed to unlock the base model's inherent generation quality. We verify DC-Gen's effectiveness on SANA and FLUX.1-Krea. The resulting DC-Gen-SANA and DC-Gen-FLUX models achieve quality comparable to their base models but with a significant speedup. Specifically, DC-Gen-FLUX reduces the latency of 4K image generation by 53x on the NVIDIA H100 GPU. When combined with NVFP4 SVDQuant, DC-Gen-FLUX generates a 4K image in just 3.5 seconds on a single NVIDIA 5090 GPU, achieving a total latency reduction of 138x compared to the base FLUX.1-Krea model. Code: https://github.com/dc-ai-projects/DC-Gen.
Scalable Reinforcement Post-Training Beyond Static Human Prompts: Evolving Alignment via Asymmetric Self-Play
Current reinforcement learning (RL) frameworks for large language models (LLM) post-training typically assume a fixed prompt distribution, which is sub-optimal and bottlenecks scalability. Prior works have explored prompt evolving, but are often limited to the supervised fine-tuning stage, and prompts are sampled and evolved uniformly without signals. This empirical work presents a paradigm shift: Evolving Alignment via Asymmetric Self-Play (eva), that casts post-training as an infinite game with regret-based signals for 2 players: (i) a creator, who strategically samples and creates new informative prompts and (ii) a solver, who learns to produce preferred responses. eva is the first method that allows language models to adaptively create training prompts in both offline and online RL post-training. The design is simple, easy-to-use yet remarkably effective: eva sets a new SOTA on challenging benchmarks, without any extra human prompts, e.g. it boosts the win-rate of gemma-2-9b-it on Arena-Hard by 51.6% -> 60.1% for DPO and 52.6% -> 62.4% for RLOO, surpassing claude-3-opus and catching up to gemini-1.5-pro, both of which are orders of magnitude larger. Extensive experiments show eva can create effective RL curricula and is robust across ablations. We believe adaptively evolving prompts are key to designing the next-generation RL post-training scheme.
decoupleQ: Towards 2-bit Post-Training Uniform Quantization via decoupling Parameters into Integer and Floating Points
Quantization emerges as one of the most promising compression technologies for deploying efficient large models for various real time application in recent years. Considering that the storage and IO of weights take up the vast majority of the overhead inside a large model, weight only quantization can lead to large gains. However, existing quantization schemes suffer from significant accuracy degradation at very low bits, or require some additional computational overhead when deployed, making it difficult to be applied to large-scale applications in industry. In this paper, we propose decoupleQ, achieving a substantial increase in model accuracy, especially at very low bits. decoupleQ abandons the traditional heuristic quantization paradigm and decouples the model parameters into integer and floating-point parts, thus transforming the quantization problem into a traditional mathematical optimization problem with constraints, which is then solved alternatively by off-the-shelf optimization methods. Quantization via decoupleQ is linear and uniform, making it hardware-friendlier than non-uniform counterpart, and enabling the idea to be migrated to high-bit quantization to enhance its robustness. Our method has achieved well on-line accuracy near fp16/bf16 on the 2-bit quantization of large speech models in ByteDance. The code is available at https://github.com/bytedance/decoupleQ
KDRL: Post-Training Reasoning LLMs via Unified Knowledge Distillation and Reinforcement Learning
Recent advances in large language model (LLM) post-training have leveraged two distinct paradigms to enhance reasoning capabilities: reinforcement learning (RL) and knowledge distillation (KD). While RL enables the emergence of complex reasoning behaviors, it often suffers from low sample efficiency when the initial policy struggles to explore high-reward trajectories. Conversely, KD improves learning efficiency via mimicking the teacher model but tends to generalize poorly to out-of-domain scenarios. In this work, we present KDRL, a unified post-training framework that jointly optimizes a reasoning model through teacher supervision (KD) and self-exploration (RL). Specifically, KDRL leverages policy gradient optimization to simultaneously minimize the reverse Kullback-Leibler divergence (RKL) between the student and teacher distributions while maximizing the expected rule-based rewards. We first formulate a unified objective that integrates GRPO and KD, and systematically explore how different KL approximations, KL coefficients, and reward-guided KD strategies affect the overall post-training dynamics and performance. Empirical results on multiple reasoning benchmarks demonstrate that KDRL outperforms GRPO and various KD baselines while achieving a favorable balance between performance and reasoning token efficiency. These findings indicate that integrating KD and RL serves as an effective and efficient strategy to train reasoning LLMs.
NUPES : Non-Uniform Post-Training Quantization via Power Exponent Search
Deep neural network (DNN) deployment has been confined to larger hardware devices due to their expensive computational requirements. This challenge has recently reached another scale with the emergence of large language models (LLMs). In order to reduce both their memory footprint and latency, a promising technique is quantization. It consists in converting floating point representations to low bit-width fixed point representations, usually by assuming a uniform mapping onto a regular grid. This process, referred to in the literature as uniform quantization, may however be ill-suited as most DNN weights and activations follow a bell-shaped distribution. This is even worse on LLMs whose weight distributions are known to exhibit large, high impact, outlier values. In this work, we propose an improvement over the most commonly adopted way to tackle this limitation in deep learning models quantization, namely, non-uniform quantization. NUPES leverages automorphisms to preserve the scalar multiplications. Such transformations are derived from power functions. However, the optimization of the exponent parameter and weight values remains a challenging and novel problem which could not be solved with previous post training optimization techniques which only learn to round up or down weight values in order to preserve the predictive function. We circumvent this limitation with a new paradigm: learning new quantized weights over the entire quantized space. Similarly, we enable the optimization of the power exponent, i.e. the optimization of the quantization operator itself during training by alleviating all the numerical instabilities. The resulting predictive function is compatible with integer-only low-bit inference. We show the ability of the method to achieve state-of-the-art compression rates in both, data-free and data-driven configurations.
Front-Loading Reasoning: The Synergy between Pretraining and Post-Training Data
The prevailing paradigm for enhancing the reasoning abilities of LLMs revolves around post-training on high-quality, reasoning-intensive data. While emerging literature suggests that reasoning data is increasingly incorporated also during the mid-training stage-a practice that is relatively more proprietary and less openly characterized-the role of such data in pretraining remains unclear. In particular, due to the opaqueness of pretraining corpora in most frontier models, the effect of reasoning data introduced at different phases of pre- and/or post-training is relatively less reported in the scientific literature. This raises several important questions: Is adding reasoning data earlier during pretraining any better than introducing it during post-training? Could earlier inclusion risk overfitting and harm generalization, or instead establish durable foundations that later fine-tuning cannot recover? We conduct the first systematic study of how reasoning data-varying in scale, diversity, and quality-affects LLM performance when introduced at different stages of training. We find that front-loading reasoning data into pretraining is critical (19% avg gain), establishing foundational capabilities that cannot be fully replicated by later-stage SFT, even with more data. We uncover an asymmetric principle for optimal data allocation: pretraining benefits most from broad diversity in reasoning patterns (11% avg gain), while SFT is more sensitive to data quality (15% avg gain). We show that high-quality pretraining data has latent effects, activated only after SFT, and that naively scaling SFT data can be detrimental, washing away the benefits of early reasoning injection. Our results challenge the conventional separation of language modeling and reasoning, providing a principled guide for strategically allocating data across the entire training pipeline to build more capable models.
APTQ: Attention-aware Post-Training Mixed-Precision Quantization for Large Language Models
Large Language Models (LLMs) have greatly advanced the natural language processing paradigm. However, the high computational load and huge model sizes pose a grand challenge for deployment on edge devices. To this end, we propose APTQ (Attention-aware Post-Training Mixed-Precision Quantization) for LLMs, which considers not only the second-order information of each layer's weights, but also, for the first time, the nonlinear effect of attention outputs on the entire model. We leverage the Hessian trace as a sensitivity metric for mixed-precision quantization, ensuring an informed precision reduction that retains model performance. Experiments show APTQ surpasses previous quantization methods, achieving an average of 4 bit width a 5.22 perplexity nearly equivalent to full precision in the C4 dataset. In addition, APTQ attains state-of-the-art zero-shot accuracy of 68.24\% and 70.48\% at an average bitwidth of 3.8 in LLaMa-7B and LLaMa-13B, respectively, demonstrating its effectiveness to produce high-quality quantized LLMs.
Autoregressive Adversarial Post-Training for Real-Time Interactive Video Generation
Existing large-scale video generation models are computationally intensive, preventing adoption in real-time and interactive applications. In this work, we propose autoregressive adversarial post-training (AAPT) to transform a pre-trained latent video diffusion model into a real-time, interactive video generator. Our model autoregressively generates a latent frame at a time using a single neural function evaluation (1NFE). The model can stream the result to the user in real time and receive interactive responses as controls to generate the next latent frame. Unlike existing approaches, our method explores adversarial training as an effective paradigm for autoregressive generation. This not only allows us to design an architecture that is more efficient for one-step generation while fully utilizing the KV cache, but also enables training the model in a student-forcing manner that proves to be effective in reducing error accumulation during long video generation. Our experiments demonstrate that our 8B model achieves real-time, 24fps, streaming video generation at 736x416 resolution on a single H100, or 1280x720 on 8xH100 up to a minute long (1440 frames). Visit our research website at https://seaweed-apt.com/2
A Survey on Post-training of Large Language Models
The emergence of Large Language Models (LLMs) has fundamentally transformed natural language processing, making them indispensable across domains ranging from conversational systems to scientific exploration. However, their pre-trained architectures often reveal limitations in specialized contexts, including restricted reasoning capacities, ethical uncertainties, and suboptimal domain-specific performance. These challenges necessitate advanced post-training language models (PoLMs) to address these shortcomings, such as OpenAI-o1/o3 and DeepSeek-R1 (collectively known as Large Reasoning Models, or LRMs). This paper presents the first comprehensive survey of PoLMs, systematically tracing their evolution across five core paradigms: Fine-tuning, which enhances task-specific accuracy; Alignment, which ensures alignment with human preferences; Reasoning, which advances multi-step inference despite challenges in reward design; Efficiency, which optimizes resource utilization amidst increasing complexity; and Integration and Adaptation, which extend capabilities across diverse modalities while addressing coherence issues. Charting progress from ChatGPT's foundational alignment strategies to DeepSeek-R1's innovative reasoning advancements, we illustrate how PoLMs leverage datasets to mitigate biases, deepen reasoning capabilities, and enhance domain adaptability. Our contributions include a pioneering synthesis of PoLM evolution, a structured taxonomy categorizing techniques and datasets, and a strategic agenda emphasizing the role of LRMs in improving reasoning proficiency and domain flexibility. As the first survey of its scope, this work consolidates recent PoLM advancements and establishes a rigorous intellectual framework for future research, fostering the development of LLMs that excel in precision, ethical robustness, and versatility across scientific and societal applications.
Detecting Data Contamination from Reinforcement Learning Post-training for Large Language Models
Data contamination poses a significant threat to the reliable evaluation of Large Language Models (LLMs). This issue arises when benchmark samples may inadvertently appear in training sets, compromising the validity of reported performance. While detection methods have been developed for the pre-training and Supervised Fine-Tuning stages, a critical research gap exists for the increasingly significant phase of Reinforcement Learning (RL) post-training. As RL post-training becomes pivotal for advancing LLM reasoning, the absence of specialized contamination detection methods in this paradigm presents a critical vulnerability. To address this, we conduct the first systematic study of data detection within RL post-training scenario and propose Self-Critique. Our method is motivated by a key observation: after RL phase, the output entropy distribution of LLMs tends to collapse into highly specific and sparse modes. Self-Critique probes for the underlying policy collapse, i.e., the model's convergence to a narrow reasoning path, which causes this entropy reduction. To facilitate this research, we also introduce RL-MIA, a benchmark constructed to simulate this specific contamination scenario. Extensive experiments show that Self-Critique significantly outperforms baseline methods across multiple models and contamination tasks, achieving an AUC improvement of up to 30%. Whereas existing methods are close to a random guess for RL-phase contamination, our method makes detection possible.
DopQ-ViT: Towards Distribution-Friendly and Outlier-Aware Post-Training Quantization for Vision Transformers
Vision transformers (ViTs) have garnered significant attention for their performance in vision tasks, but the high computational cost and significant latency issues have hindered widespread adoption. Post-training quantization (PTQ), a promising method for model compression, still faces accuracy degradation challenges with ViTs. There are two reasons for this: the existing quantization paradigm does not fit the power-law distribution of post-Softmax activations well, and accuracy inevitably decreases after reparameterizing post-LayerNorm activations. We propose a Distribution-Friendly and Outlier-Aware Post-training Quantization method for Vision Transformers, named DopQ-ViT. DopQ-ViT analyzes the inefficiencies of current quantizers and introduces a distribution-friendly Tan Quantizer called TanQ. TanQ focuses more on values near 1, more accurately preserving the power-law distribution of post-Softmax activations, and achieves favorable results. Besides, during the reparameterization of post-LayerNorm activations from channel-wise to layer-wise quantization, the accuracy degradation is mainly due to the significant impact of outliers in the scaling factors. Therefore, DopQ-ViT proposes a method to select Median as the Optimal Scaling Factor, denoted as MOSF, which compensates for the influence of outliers and preserves the performance of the quantization model. DopQ-ViT has been extensively validated and significantly improves the performance of quantization models, especially in low-bit settings.
RepQuant: Towards Accurate Post-Training Quantization of Large Transformer Models via Scale Reparameterization
Large transformer models have demonstrated remarkable success. Post-training quantization (PTQ), which requires only a small dataset for calibration and avoids end-to-end retraining, is a promising solution for compressing these large models. Regrettably, existing PTQ methods typically exhibit non-trivial performance loss. We find that the performance bottleneck stems from over-consideration of hardware compatibility in the quantization process, compelling them to reluctantly employ simple quantizers, albeit at the expense of accuracy. With the above insights, we propose RepQuant, a novel PTQ framework with quantization-inference decoupling paradigm to address the above issues. RepQuant employs complex quantizers in the quantization process and simplified quantizers in the inference process, and performs mathematically equivalent transformations between the two through quantization scale reparameterization, thus ensuring both accurate quantization and efficient inference. More specifically, we focus on two components with extreme distributions: LayerNorm activations and Softmax activations. Initially, we apply channel-wise quantization and log2 quantization, respectively, which are tailored to their distributions. In particular, for the former, we introduce a learnable per-channel dual clipping scheme, which is designed to efficiently identify outliers in the unbalanced activations with fine granularity. Then, we reparameterize the scales to hardware-friendly layer-wise quantization and log2 quantization for inference. Moreover, quantized weight reconstruction is seamlessly integrated into the above procedure to further push the performance limits. Extensive experiments are performed on different large-scale transformer variants on multiple tasks, including vision, language, and multi-modal transformers, and RepQuant encouragingly demonstrates significant performance advantages.
RiskPO: Risk-based Policy Optimization via Verifiable Reward for LLM Post-Training
Reinforcement learning with verifiable reward has recently emerged as a central paradigm for post-training large language models (LLMs); however, prevailing mean-based methods, such as Group Relative Policy Optimization (GRPO), suffer from entropy collapse and limited reasoning gains. We argue that these issues stem from overemphasizing high-probability output sequences while neglecting rare but informative reasoning paths. To address these challenges, we propose Risk-based Policy Optimization (RiskPO), which substitutes classical mean-based objectives with principled risk measures. Specifically, we introduce a Mixed Value-at-Risk objective that integrates weighted attention over multiple regions of the reward distribution, thereby amplifying gradient signals on challenging instances and preventing overconfident convergence. We further design a bundling scheme that aggregates multiple questions into bundles, thus enriching the feedback signal and yielding more stable and informative training dynamics. Theoretically, we prove that the risk-averse update alleviates entropy collapse and promotes exploration. Numerically, RiskPO achieves consistent and significant improvements in mathematical reasoning, multi-modal reasoning, and code generation benchmarks, surpassing GRPO and its variants on both Pass@1 and Pass@k metrics. Our results demonstrate that risk-based optimization provides a rigorous and effective paradigm for enhancing LLM reasoning capabilities.
Inverse Reinforcement Learning Meets Large Language Model Post-Training: Basics, Advances, and Opportunities
In the era of Large Language Models (LLMs), alignment has emerged as a fundamental yet challenging problem in the pursuit of more reliable, controllable, and capable machine intelligence. The recent success of reasoning models and conversational AI systems has underscored the critical role of reinforcement learning (RL) in enhancing these systems, driving increased research interest at the intersection of RL and LLM alignment. This paper provides a comprehensive review of recent advances in LLM alignment through the lens of inverse reinforcement learning (IRL), emphasizing the distinctions between RL techniques employed in LLM alignment and those in conventional RL tasks. In particular, we highlight the necessity of constructing neural reward models from human data and discuss the formal and practical implications of this paradigm shift. We begin by introducing fundamental concepts in RL to provide a foundation for readers unfamiliar with the field. We then examine recent advances in this research agenda, discussing key challenges and opportunities in conducting IRL for LLM alignment. Beyond methodological considerations, we explore practical aspects, including datasets, benchmarks, evaluation metrics, infrastructure, and computationally efficient training and inference techniques. Finally, we draw insights from the literature on sparse-reward RL to identify open questions and potential research directions. By synthesizing findings from diverse studies, we aim to provide a structured and critical overview of the field, highlight unresolved challenges, and outline promising future directions for improving LLM alignment through RL and IRL techniques.
Exploring Layer-wise Information Effectiveness for Post-Training Quantization in Small Language Models
Large language models with billions of parameters are often over-provisioned: many layers contribute little unique information yet dominate the memory and energy footprint during inference. We present LieQ, a metric-driven post-training quantization framework that addresses the critical challenge of maintaining accuracy in sub-7B models under extreme low-bit compression. Our method introduces three complementary layer-wise diagnostics-Perplexity Drop, Representational Compactness, and Top-k Energy Gain -that reveal a canonical division of labour across layers, enabling automatic bit-width allocation without gradient updates. Unlike existing approaches that suffer severe accuracy degradation at 2-3 bits precision, LieQ achieves state-of-the-art compression-accuracy trade-offs: on Qwen3-4B, it recovers 95.9% of FP16 baseline performance at 2.05-bit quantization, outperforming GPTQ by 19.7% and AWQ by 18.1% on average across seven zero-shot reasoning tasks. Applied to LLaMA3.2-3B, LieQ maintains 98.2% of baseline accuracy at 2.07-bit precision while enabling 4x memory reduction, establishing new paradigms for deploying small language models on resource-constrained edge devices.
GVPO: Group Variance Policy Optimization for Large Language Model Post-Training
Post-training plays a crucial role in refining and aligning large language models to meet specific tasks and human preferences. While recent advancements in post-training techniques, such as Group Relative Policy Optimization (GRPO), leverage increased sampling with relative reward scoring to achieve superior performance, these methods often suffer from training instability that limits their practical adoption. To address this challenge, we present Group Variance Policy Optimization (GVPO). GVPO incorporates the analytical solution to KL-constrained reward maximization directly into its gradient weights, ensuring alignment with the optimal policy. The method provides intuitive physical interpretations: its gradient mirrors the mean squared error between the central distance of implicit rewards and that of actual rewards. GVPO offers two key advantages: (1) it guarantees a unique optimal solution, exactly the KL-constrained reward maximization objective, (2) it supports flexible sampling distributions that avoids on-policy and importance sampling limitations. By unifying theoretical guarantees with practical adaptability, GVPO establishes a new paradigm for reliable and versatile LLM post-training.
PTQ1.61: Push the Real Limit of Extremely Low-Bit Post-Training Quantization Methods for Large Language Models
Large Language Models (LLMs) suffer severe performance degradation when facing extremely low-bit (sub 2-bit) quantization. Several existing sub 2-bit post-training quantization (PTQ) methods utilize a mix-precision scheme by leveraging an unstructured fine-grained mask to explicitly distinguish salient weights, while which introduces an extra 1-bit or more per weight. To explore the real limit of PTQ, we propose an extremely low-bit PTQ method called PTQ1.61, which enables weight quantization to 1.61-bit for the first time. Specifically, we first introduce a one-dimensional structured mask with negligibly additional 0.0002-bit per weight based on input activations from the perspective of reducing the upper bound of quantization error to allocate corresponding salient weight channels to 4-bit. For non-salient channels binarization, an efficient block-wise scaling factors optimization framework is then presented to take implicit row-wise correlations and angular biases into account. Different from prior works that concentrate on adjusting quantization methodologies, we further propose a novel paradigm called quantization preprocessing, where we argue that transforming the weight distribution of the pretrained model before quantization can alleviate the difficulty in per-channel extremely low-bit PTQ. Extensive experiments indicate our PTQ1.61 achieves state-of-the-art performance in extremely low-bit quantization. Codes are available at https://github.com/zjq0455/PTQ1.61.
A Unified View of Delta Parameter Editing in Post-Trained Large-Scale Models
Post-training has emerged as a crucial paradigm for adapting large-scale pre-trained models to various tasks, whose effects are fully reflected by delta parameters (i.e., the disparity between post-trained and pre-trained parameters). While numerous studies have explored delta parameter properties via operations like pruning, quantization, low-rank approximation, and extrapolation, a unified framework for systematically examining these characteristics has been lacking. In this paper, we propose a novel perspective based on Riemann sum approximation of the loss function to elucidate delta parameter editing operations. Our analysis categorizes existing methods into three classes based on their post-editing performance: competitive, decreased, and improved, explaining how they are expressed by the Riemann sum approximation term and how they alter the model performance. Extensive experiments on both visual and language models, including ViT, LLaMA 3, Qwen 2, and Mistral, corroborate our theoretical findings. Furthermore, we introduce extensions to existing techniques like DARE and BitDelta, highlighting their limitations in leveraging the properties of delta parameters and reorganizing them into general expressions to enhance the applicability and effectiveness of delta parameter editing in post-trained models.
CPL: Critical Plan Step Learning Boosts LLM Generalization in Reasoning Tasks
Post-training, particularly reinforcement learning (RL) using self-play-generated data, has become a new learning paradigm for large language models (LLMs). However, scaling RL to develop a general reasoner remains a research challenge, as existing methods focus on task-specific reasoning without adequately addressing generalization across a broader range of tasks. Moreover, unlike traditional RL with limited action space, LLMs operate in an infinite space, making it crucial to search for valuable and diverse strategies to solve problems effectively. To address this, we propose searching within the action space on high-level abstract plans to enhance model generalization and introduce Critical Plan Step Learning (CPL), comprising: 1) searching on plan, using Monte Carlo Tree Search (MCTS) to explore diverse plan steps in multi-step reasoning tasks, and 2) learning critical plan steps through Step-level Advantage Preference Optimization (Step-APO), which integrates advantage estimates for step preference obtained via MCTS into Direct Preference Optimization (DPO). This combination helps the model effectively learn critical plan steps, enhancing both reasoning capabilities and generalization. Experimental results demonstrate that our method, trained exclusively on GSM8K and MATH, not only significantly improves performance on GSM8K (+10.5%) and MATH (+6.5%), but also enhances out-of-domain reasoning benchmarks, such as HumanEval (+12.2%), GPQA (+8.6%), ARC-C (+4.0%), MMLU-STEM (+2.2%), and BBH (+1.8%).
Test-time Prompt Intervention
Test-time compute has led to remarkable success in the large language model (LLM) community, particularly for complex tasks, where longer chains of thought (CoTs) are generated to enhance reasoning capabilities. However, growing evidence reveals that such reasoning models often produce CoTs plagued by excessive redundancy, including unnecessary verification steps and repetitive reasoning shifts. The root cause lies in post-training of them that overly rely on outcome reward paradigms, as the data of process reward paradigms, which regulate intermediate reasoning steps, is difficult to construct at scale. To address this, we propose PI, a novel framework for Test-time Prompt Intervention. PI provides an interface to dynamically guide and regulate reasoning paths during inference through timely (When module) and proper (How module) interventions and post-intervention sampling (Which module). This allows human problem-solving expertise and cognitive science principles to be seamlessly integrated into LLMs' reasoning processes, enhancing controllability and interpretability. Extensive experiments across multiple models and datasets demonstrate that PI significantly shortens CoTs while reducing hallucination, yielding more concise and reliable reasoning.
Beyond Log Likelihood: Probability-Based Objectives for Supervised Fine-Tuning across the Model Capability Continuum
Supervised fine-tuning (SFT) is the standard approach for post-training large language models (LLMs), yet it often shows limited generalization. We trace this limitation to its default training objective: negative log likelihood (NLL). While NLL is classically optimal when training from scratch, post-training operates in a different paradigm and could violate its optimality assumptions, where models already encode task-relevant priors and supervision can be long and noisy. To this end, we study a general family of probability-based objectives and characterize their effectiveness under different conditions. Through comprehensive experiments and extensive ablation studies across 7 model backbones, 14 benchmarks, and 3 domains, we uncover a critical dimension that governs objective behavior: the model-capability continuum. Near the model-strong end, prior-leaning objectives that downweight low-probability tokens (e.g., -p, -p^{10}, thresholded variants) consistently outperform NLL; toward the model-weak end, NLL dominates; in between, no single objective prevails. Our theoretical analysis further elucidates how objectives trade places across the continuum, providing a principled foundation for adapting objectives to model capability. Our code is available at https://github.com/GaotangLi/Beyond-Log-Likelihood.
Beyond Pass@1: Self-Play with Variational Problem Synthesis Sustains RLVR
Reinforcement Learning with Verifiable Rewards (RLVR) has recently emerged as a key paradigm for post-training Large Language Models (LLMs), particularly for complex reasoning tasks. However, vanilla RLVR training has been shown to improve Pass@1 performance at the expense of policy entropy, leading to reduced generation diversity and limiting the Pass@k performance, which typically represents the upper bound of LLM reasoning capability. In this paper, we systematically analyze the policy's generation diversity from the perspective of training problems and find that augmenting and updating training problems helps mitigate entropy collapse during training. Based on these observations, we propose an online Self-play with Variational problem Synthesis (SvS) strategy for RLVR training, which uses the policy's correct solutions to synthesize variational problems while ensuring their reference answers remain identical to the originals. This self-improving strategy effectively maintains policy entropy during training and substantially improves Pass@k compared with standard RLVR, sustaining prolonged improvements and achieving absolute gains of 18.3% and 22.8% in Pass@32 performance on the competition-level AIME24 and AIME25 benchmarks. Experiments on 12 reasoning benchmarks across varying model sizes from 3B to 32B consistently demonstrate the generalizability and robustness of SvS.
MoDoMoDo: Multi-Domain Data Mixtures for Multimodal LLM Reinforcement Learning
Reinforcement Learning with Verifiable Rewards (RLVR) has recently emerged as a powerful paradigm for post-training large language models (LLMs), achieving state-of-the-art performance on tasks with structured, verifiable answers. Applying RLVR to Multimodal LLMs (MLLMs) presents significant opportunities but is complicated by the broader, heterogeneous nature of vision-language tasks that demand nuanced visual, logical, and spatial capabilities. As such, training MLLMs using RLVR on multiple datasets could be beneficial but creates challenges with conflicting objectives from interaction among diverse datasets, highlighting the need for optimal dataset mixture strategies to improve generalization and reasoning. We introduce a systematic post-training framework for Multimodal LLM RLVR, featuring a rigorous data mixture problem formulation and benchmark implementation. Specifically, (1) We developed a multimodal RLVR framework for multi-dataset post-training by curating a dataset that contains different verifiable vision-language problems and enabling multi-domain online RL learning with different verifiable rewards; (2) We proposed a data mixture strategy that learns to predict the RL fine-tuning outcome from the data mixture distribution, and consequently optimizes the best mixture. Comprehensive experiments showcase that multi-domain RLVR training, when combined with mixture prediction strategies, can significantly boost MLLM general reasoning capacities. Our best mixture improves the post-trained model's accuracy on out-of-distribution benchmarks by an average of 5.24% compared to the same model post-trained with uniform data mixture, and by a total of 20.74% compared to the pre-finetuning baseline.
EvoCoT: Overcoming the Exploration Bottleneck in Reinforcement Learning
Reinforcement learning with verifiable reward (RLVR) has become a promising paradigm for post-training large language models (LLMs) to improve their reasoning capability. However, when the rollout accuracy is low on hard problems, the reward becomes sparse, limiting learning efficiency and causing exploration bottlenecks. Existing approaches either rely on teacher models for distillation or filter out difficult problems, which limits scalability or restricts reasoning improvement through exploration. We propose EvoCoT, a self-evolving curriculum learning framework based on two-stage chain-of-thought (CoT) reasoning optimization. EvoCoT constrains the exploration space by self-generating and verifying CoT trajectories, then gradually shortens CoT steps to expand the space in a controlled way. The framework enables LLMs to stably learn from initially unsolved hard problems under sparse rewards. We apply EvoCoT to multiple LLM families, including Qwen, DeepSeek, and Llama. Experiments show that EvoCoT enables LLMs to solve previously unsolved problems, improves reasoning capability without external CoT supervision, and is compatible with various RL fine-tuning methods. We release the source code to support future research.
Blending Supervised and Reinforcement Fine-Tuning with Prefix Sampling
Existing post-training techniques for large language models are broadly categorized into Supervised Fine-Tuning (SFT) and Reinforcement Fine-Tuning (RFT). Each paradigm presents a distinct trade-off: SFT excels at mimicking demonstration data but can lead to problematic generalization as a form of behavior cloning. Conversely, RFT can significantly enhance a model's performance but is prone to learn unexpected behaviors, and its performance is highly sensitive to the initial policy. In this paper, we propose a unified view of these methods and introduce Prefix-RFT, a hybrid approach that synergizes learning from both demonstration and exploration. Using mathematical reasoning problems as a testbed, we empirically demonstrate that Prefix-RFT is both simple and effective. It not only surpasses the performance of standalone SFT and RFT but also outperforms parallel mixed-policy RFT methods. A key advantage is its seamless integration into existing open-source frameworks, requiring only minimal modifications to the standard RFT pipeline. Our analysis highlights the complementary nature of SFT and RFT, and validates that Prefix-RFT effectively harmonizes these two learning paradigms. Furthermore, ablation studies confirm the method's robustness to variations in the quality and quantity of demonstration data. We hope this work offers a new perspective on LLM post-training, suggesting that a unified paradigm that judiciously integrates demonstration and exploration could be a promising direction for future research.
Q-Sched: Pushing the Boundaries of Few-Step Diffusion Models with Quantization-Aware Scheduling
Text-to-image diffusion models are computationally intensive, often requiring dozens of forward passes through large transformer backbones. For instance, Stable Diffusion XL generates high-quality images with 50 evaluations of a 2.6B-parameter model, an expensive process even for a single batch. Few-step diffusion models reduce this cost to 2-8 denoising steps but still depend on large, uncompressed U-Net or diffusion transformer backbones, which are often too costly for full-precision inference without datacenter GPUs. These requirements also limit existing post-training quantization methods that rely on full-precision calibration. We introduce Q-Sched, a new paradigm for post-training quantization that modifies the diffusion model scheduler rather than model weights. By adjusting the few-step sampling trajectory, Q-Sched achieves full-precision accuracy with a 4x reduction in model size. To learn quantization-aware pre-conditioning coefficients, we propose the JAQ loss, which combines text-image compatibility with an image quality metric for fine-grained optimization. JAQ is reference-free and requires only a handful of calibration prompts, avoiding full-precision inference during calibration. Q-Sched delivers substantial gains: a 15.5% FID improvement over the FP16 4-step Latent Consistency Model and a 16.6% improvement over the FP16 8-step Phased Consistency Model, showing that quantization and few-step distillation are complementary for high-fidelity generation. A large-scale user study with more than 80,000 annotations further confirms Q-Sched's effectiveness on both FLUX.1[schnell] and SDXL-Turbo.
FlashWorld: High-quality 3D Scene Generation within Seconds
We propose FlashWorld, a generative model that produces 3D scenes from a single image or text prompt in seconds, 10~100times faster than previous works while possessing superior rendering quality. Our approach shifts from the conventional multi-view-oriented (MV-oriented) paradigm, which generates multi-view images for subsequent 3D reconstruction, to a 3D-oriented approach where the model directly produces 3D Gaussian representations during multi-view generation. While ensuring 3D consistency, 3D-oriented method typically suffers poor visual quality. FlashWorld includes a dual-mode pre-training phase followed by a cross-mode post-training phase, effectively integrating the strengths of both paradigms. Specifically, leveraging the prior from a video diffusion model, we first pre-train a dual-mode multi-view diffusion model, which jointly supports MV-oriented and 3D-oriented generation modes. To bridge the quality gap in 3D-oriented generation, we further propose a cross-mode post-training distillation by matching distribution from consistent 3D-oriented mode to high-quality MV-oriented mode. This not only enhances visual quality while maintaining 3D consistency, but also reduces the required denoising steps for inference. Also, we propose a strategy to leverage massive single-view images and text prompts during this process to enhance the model's generalization to out-of-distribution inputs. Extensive experiments demonstrate the superiority and efficiency of our method.
MM-HELIX: Boosting Multimodal Long-Chain Reflective Reasoning with Holistic Platform and Adaptive Hybrid Policy Optimization
While current Multimodal Large Language Models (MLLMs) have demonstrated proficiency in reasoning tasks such as mathematics and logic, their capacity for long-chain reflective reasoning, a prerequisite for solving complex real-world problems, remains largely underexplored. In this work, we first conduct an extensive empirical investigation to evaluate this capability. Leveraging a carefully designed data synthesis engine, we construct MM-HELIX, a multimodal benchmark consisting 1,260 samples of 42 challenging synthetic tasks that require iterative thinking and backtracking. Empirical results on this benchmark reveal that existing MLLMs exhibit significant performance deficits in long-chain reflective reasoning. To address this limitation, we generate post-training data and further explore learning paradigms for exploiting such data. We first develop the Step-Elicited Response Generation pipeline to create MM-HELIX-100K, a large-scale dataset of 100k high-quality, reflective reasoning traces for instruction-tuning stage. Given that standard Reinforcement Learning fails on complex tasks due to sparse reward signals and catastrophic forgetting after Supervised Fine-Tuning, we propose Adaptive Hybrid Policy Optimization (AHPO), a novel training strategy that dynamically unifies offline supervision and online optimization into a single stage. This strategy enables the model to learn from expert data when rewards are sparse and conduct independent exploration once proficient. When applied to the Qwen2.5-VL-7B baseline, our method achieves a +18.6\% accuracy improvement on MM-HELIX benchmark and demonstrates strong generalization with a +5.7\% average performance gain on general mathematic and logic tasks. Our work demonstrate that reflective reasoning in MLLMs can be effectively learned and generalized, paving the way for developing more capable MLLMs.
Cuckoo: An IE Free Rider Hatched by Massive Nutrition in LLM's Nest
Massive high-quality data, both pre-training raw texts and post-training annotations, have been carefully prepared to incubate advanced large language models (LLMs). In contrast, for information extraction (IE), pre-training data, such as BIO-tagged sequences, are hard to scale up. We show that IE models can act as free riders on LLM resources by reframing next-token prediction into extraction for tokens already present in the context. Specifically, our proposed next tokens extraction (NTE) paradigm learns a versatile IE model, Cuckoo, with 102.6M extractive data converted from LLM's pre-training and post-training data. Under the few-shot setting, Cuckoo adapts effectively to traditional and complex instruction-following IE with better performance than existing pre-trained IE models. As a free rider, Cuckoo can naturally evolve with the ongoing advancements in LLM data preparation, benefiting from improvements in LLM training pipelines without additional manual effort.
Advantage Weighted Matching: Aligning RL with Pretraining in Diffusion Models
Reinforcement Learning (RL) has emerged as a central paradigm for advancing Large Language Models (LLMs), where pre-training and RL post-training share the same log-likelihood formulation. In contrast, recent RL approaches for diffusion models, most notably Denoising Diffusion Policy Optimization (DDPO), optimize an objective different from the pretraining objectives--score/flow matching loss. In this work, we establish a novel theoretical analysis: DDPO is an implicit form of score/flow matching with noisy targets, which increases variance and slows convergence. Building on this analysis, we introduce Advantage Weighted Matching (AWM), a policy-gradient method for diffusion. It uses the same score/flow-matching loss as pretraining to obtain a lower-variance objective and reweights each sample by its advantage. In effect, AWM raises the influence of high-reward samples and suppresses low-reward ones while keeping the modeling objective identical to pretraining. This unifies pretraining and RL conceptually and practically, is consistent with policy-gradient theory, reduces variance, and yields faster convergence. This simple yet effective design yields substantial benefits: on GenEval, OCR, and PickScore benchmarks, AWM delivers up to a 24times speedup over Flow-GRPO (which builds on DDPO), when applied to Stable Diffusion 3.5 Medium and FLUX, without compromising generation quality. Code is available at https://github.com/scxue/advantage_weighted_matching.
RLBFF: Binary Flexible Feedback to bridge between Human Feedback & Verifiable Rewards
Reinforcement Learning with Human Feedback (RLHF) and Reinforcement Learning with Verifiable Rewards (RLVR) are the main RL paradigms used in LLM post-training, each offering distinct advantages. However, RLHF struggles with interpretability and reward hacking because it relies on human judgments that usually lack explicit criteria, whereas RLVR is limited in scope by its focus on correctness-based verifiers. We propose Reinforcement Learning with Binary Flexible Feedback (RLBFF), which combines the versatility of human-driven preferences with the precision of rule-based verification, enabling reward models to capture nuanced aspects of response quality beyond mere correctness. RLBFF extracts principles that can be answered in a binary fashion (e.g. accuracy of information: yes, or code readability: no) from natural language feedback. Such principles can then be used to ground Reward Model training as an entailment task (response satisfies or does not satisfy an arbitrary principle). We show that Reward Models trained in this manner can outperform Bradley-Terry models when matched for data and achieve top performance on RM-Bench (86.2%) and JudgeBench (81.4%, #1 on leaderboard as of September 24, 2025). Additionally, users can specify principles of interest at inference time to customize the focus of our reward models, in contrast to Bradley-Terry models. Finally, we present a fully open source recipe (including data) to align Qwen3-32B using RLBFF and our Reward Model, to match or exceed the performance of o3-mini and DeepSeek R1 on general alignment benchmarks of MT-Bench, WildBench, and Arena Hard v2 (at <5% of the inference cost).
CronusVLA: Transferring Latent Motion Across Time for Multi-Frame Prediction in Manipulation
Recent vision-language-action (VLA) models built on pretrained vision-language models (VLMs) have demonstrated strong generalization across manipulation tasks. However, they remain constrained by a single-frame observation paradigm and cannot fully benefit from the motion information offered by aggregated multi-frame historical observations, as the large vision-language backbone introduces substantial computational cost and inference latency. We propose CronusVLA, a unified framework that extends single-frame VLA models to the multi-frame paradigm through an efficient post-training stage. CronusVLA comprises three key components: (1) single-frame pretraining on large-scale embodied datasets with autoregressive action tokens prediction, which establishes an embodied vision-language foundation; (2) multi-frame encoding, adapting the prediction of vision-language backbones from discrete action tokens to motion features during post-training, and aggregating motion features from historical frames into a feature chunking; (3) cross-frame decoding, which maps the feature chunking to accurate actions via a shared decoder with cross-attention. By reducing redundant token computation and caching past motion features, CronusVLA achieves efficient inference. As an application of motion features, we further propose an action adaptation mechanism based on feature-action retrieval to improve model performance during finetuning. CronusVLA achieves state-of-the-art performance on SimplerEnv with 70.9% success rate, and 12.7% improvement over OpenVLA on LIBERO. Real-world Franka experiments also show the strong performance and robustness.
Search and Refine During Think: Autonomous Retrieval-Augmented Reasoning of LLMs
Large language models have demonstrated impressive reasoning capabilities but are inherently limited by their knowledge reservoir. Retrieval-augmented reasoning mitigates this limitation by allowing LLMs to query external resources, but existing methods often retrieve irrelevant or noisy information, hindering accurate reasoning. In this paper, we propose AutoRefine, a reinforcement learning post-training framework that adopts a new ``search-and-refine-during-think'' paradigm. AutoRefine introduces explicit knowledge refinement steps between successive search calls, enabling the model to iteratively filter, distill, and organize evidence before generating an answer. Furthermore, we incorporate tailored retrieval-specific rewards alongside answer correctness rewards using group relative policy optimization. Experiments on single-hop and multi-hop QA benchmarks demonstrate that AutoRefine significantly outperforms existing approaches, particularly in complex, multi-hop reasoning scenarios. Detailed analysis shows that AutoRefine issues frequent, higher-quality searches and synthesizes evidence effectively.
$Ψ$-Sampler: Initial Particle Sampling for SMC-Based Inference-Time Reward Alignment in Score Models
We introduce Psi-Sampler, an SMC-based framework incorporating pCNL-based initial particle sampling for effective inference-time reward alignment with a score-based generative model. Inference-time reward alignment with score-based generative models has recently gained significant traction, following a broader paradigm shift from pre-training to post-training optimization. At the core of this trend is the application of Sequential Monte Carlo (SMC) to the denoising process. However, existing methods typically initialize particles from the Gaussian prior, which inadequately captures reward-relevant regions and results in reduced sampling efficiency. We demonstrate that initializing from the reward-aware posterior significantly improves alignment performance. To enable posterior sampling in high-dimensional latent spaces, we introduce the preconditioned Crank-Nicolson Langevin (pCNL) algorithm, which combines dimension-robust proposals with gradient-informed dynamics. This approach enables efficient and scalable posterior sampling and consistently improves performance across various reward alignment tasks, including layout-to-image generation, quantity-aware generation, and aesthetic-preference generation, as demonstrated in our experiments.
Self-Improving LLM Agents at Test-Time
One paradigm of language model (LM) fine-tuning relies on creating large training datasets, under the assumption that high quantity and diversity will enable models to generalize to novel tasks after post-training. In practice, gathering large sets of data is inefficient, and training on them is prohibitively expensive; worse, there is no guarantee that the resulting model will handle complex scenarios or generalize better. Moreover, existing techniques rarely assess whether a training sample provides novel information or is redundant with the knowledge already acquired by the model, resulting in unnecessary costs. In this work, we explore a new test-time self-improvement method to create more effective and generalizable agentic LMs on-the-fly. The proposed algorithm can be summarized in three steps: (i) first it identifies the samples that model struggles with (self-awareness), (ii) then generates similar examples from detected uncertain samples (self-data augmentation), and (iii) uses these newly generated samples at test-time fine-tuning (self-improvement). We study two variants of this approach: Test-Time Self-Improvement (TT-SI), where the same model generates additional training examples from its own uncertain cases and then learns from them, and contrast this approach with Test-Time Distillation (TT-D), where a stronger model generates similar examples for uncertain cases, enabling student to adapt using distilled supervision. Empirical evaluations across different agent benchmarks demonstrate that TT-SI improves the performance with +5.48% absolute accuracy gain on average across all benchmarks and surpasses other standard learning methods, yet using 68x less training samples. Our findings highlight the promise of TT-SI, demonstrating the potential of self-improvement algorithms at test-time as a new paradigm for building more capable agents toward self-evolution.
How Post-Training Reshapes LLMs: A Mechanistic View on Knowledge, Truthfulness, Refusal, and Confidence
Post-training is essential for the success of large language models (LLMs), transforming pre-trained base models into more useful and aligned post-trained models. While plenty of works have studied post-training algorithms and evaluated post-training models by their outputs, it remains understudied how post-training reshapes LLMs internally. In this paper, we compare base and post-trained LLMs mechanistically from four perspectives to better understand post-training effects. Our findings across model families and datasets reveal that: (1) Post-training does not change the factual knowledge storage locations, and it adapts knowledge representations from the base model while developing new knowledge representations; (2) Both truthfulness and refusal can be represented by linear vectors in the hidden representation space. The truthfulness direction is highly similar between the base and post-trained model, and it is effectively transferable for interventions; (3) The refusal direction is different between the base and post-trained models, and it shows limited forward transferability; (4) Differences in confidence between the base and post-trained models cannot be attributed to entropy neurons. Our study provides insights into the fundamental mechanisms preserved and altered during post-training, facilitates downstream tasks like model steering, and could potentially benefit future research in interpretability and LLM post-training.
TÜLU 3: Pushing Frontiers in Open Language Model Post-Training
Language model post-training is applied to refine behaviors and unlock new skills across a wide range of recent language models, but open recipes for applying these techniques lag behind proprietary ones. The underlying training data and recipes for post-training are simultaneously the most important pieces of the puzzle and the portion with the least transparency. To bridge this gap, we introduce T\"ULU 3, a family of fully-open state-of-the-art post-trained models, alongside its data, code, and training recipes, serving as a comprehensive guide for modern post-training techniques. T\"ULU 3, which builds on Llama 3.1 base models, achieves results surpassing the instruct versions of Llama 3.1, Qwen 2.5, Mistral, and even closed models such as GPT-4o-mini and Claude 3.5-Haiku. The training algorithms for our models include supervised finetuning (SFT), Direct Preference Optimization (DPO), and a novel method we call Reinforcement Learning with Verifiable Rewards (RLVR). With T\"ULU 3, we introduce a multi-task evaluation scheme for post-training recipes with development and unseen evaluations, standard benchmark implementations, and substantial decontamination of existing open datasets on said benchmarks. We conclude with analysis and discussion of training methods that did not reliably improve performance. In addition to the T\"ULU 3 model weights and demo, we release the complete recipe -- including datasets for diverse core skills, a robust toolkit for data curation and evaluation, the training code and infrastructure, and, most importantly, a detailed report for reproducing and further adapting the T\"ULU 3 approach to more domains.
A Unified Pairwise Framework for RLHF: Bridging Generative Reward Modeling and Policy Optimization
Reinforcement Learning from Human Feedback (RLHF) has emerged as a important paradigm for aligning large language models (LLMs) with human preferences during post-training. This framework typically involves two stages: first, training a reward model on human preference data, followed by optimizing the language model using reinforcement learning algorithms. However, current RLHF approaches may constrained by two limitations. First, existing RLHF frameworks often rely on Bradley-Terry models to assign scalar rewards based on pairwise comparisons of individual responses. However, this approach imposes significant challenges on reward model (RM), as the inherent variability in prompt-response pairs across different contexts demands robust calibration capabilities from the RM. Second, reward models are typically initialized from generative foundation models, such as pre-trained or supervised fine-tuned models, despite the fact that reward models perform discriminative tasks, creating a mismatch. This paper introduces Pairwise-RL, a RLHF framework that addresses these challenges through a combination of generative reward modeling and a pairwise proximal policy optimization (PPO) algorithm. Pairwise-RL unifies reward model training and its application during reinforcement learning within a consistent pairwise paradigm, leveraging generative modeling techniques to enhance reward model performance and score calibration. Experimental evaluations demonstrate that Pairwise-RL outperforms traditional RLHF frameworks across both internal evaluation datasets and standard public benchmarks, underscoring its effectiveness in improving alignment and model behavior.
Improving Sampling Efficiency in RLVR through Adaptive Rollout and Response Reuse
Large language models (LLMs) have achieved impressive reasoning performance, with reinforcement learning with verifiable rewards (RLVR) emerging as a standard paradigm for post-training. A representative algorithm, group relative policy optimization (GRPO) (Shao et al., 2024), computes advantages by normalizing outcome rewards within response groups, but suffers from a vanishing advantage issue when all responses in a group receive identical rewards. To address this issue, we propose Adaptive Rollout and Response Reuse Policy Optimization (AR3PO), a sampling efficient RLVR algorithm that introduces two novel techniques: adaptive rollout, which dynamically allocates more responses to difficult prompts while saving computation on easier ones, and response reuse, which leverages previously generated correct responses to provide useful training signals. We compare AR3PO with strong RLVR baselines on multiple representative benchmarks using two different families of base models. Across the 7B and 8B models, AR3PO consistently outperforms GRPO and matches or surpasses DAPO (Yu et al., 2025), reducing rollout cost by up to 4.2x. On the larger 32B model, AR3PO achieves comparable performance to DAPO at similar training steps while maintaining substantially lower rollout cost.
AI capabilities can be significantly improved without expensive retraining
State-of-the-art AI systems can be significantly improved without expensive retraining via "post-training enhancements"-techniques applied after initial training like fine-tuning the system to use a web browser. We review recent post-training enhancements, categorizing them into five types: tool-use, prompting methods, scaffolding, solution selection, and data generation. Different enhancements improve performance on different tasks, making it hard to compare their significance. So we translate improvements from different enhancements into a common currency, the compute-equivalent gain: how much additional training compute would be needed to improve performance by the same amount as the enhancement. Our non-experimental work shows that post-training enhancements have significant benefits: most surveyed enhancements improve benchmark performance by more than a 5x increase in training compute, some by more than 20x. Post-training enhancements are relatively cheap to develop: fine-tuning costs are typically <1% of the original training cost. Governing the development of capable post-training enhancements may be challenging because frontier models could be enhanced by a wide range of actors.
Timber: Training-free Instruct Model Refining with Base via Effective Rank
Post-training, which elicits a pretrained Base model into the corresponding Instruct model, is widely considered to be superficial. In this work, we first reinforce this hypothesis by providing novel quantitative evidence from the weight level that the effective rank (eRank) remains negligibly changed. However, this superficiality also suffers a critical trade-off, improving the exploitation capabilities at the cost of limiting its exploration. To tackle this issue, we propose Timber, a simple yet effective training-free method that enhances the exploration capability of the Instruct model while preserving its exploitation. The key insight is to partially revert Instruct towards the paired Base model by subtle yet targeted refinement of the weight deltas. Extensive experiments on Llama and Qwen series demonstrate that Timber consistently improves vanilla Instruct models, particularly on Pass@k performance. Our findings offer new insights into the post-training stage at the weight level and practical strategies to refine the Instruct model without training.
Towards a Unified View of Large Language Model Post-Training
Two major sources of training data exist for post-training modern language models: online (model-generated rollouts) data, and offline (human or other-model demonstrations) data. These two types of data are typically used by approaches like Reinforcement Learning (RL) and Supervised Fine-Tuning (SFT), respectively. In this paper, we show that these approaches are not in contradiction, but are instances of a single optimization process. We derive a Unified Policy Gradient Estimator, and present the calculations of a wide spectrum of post-training approaches as the gradient of a common objective under different data distribution assumptions and various bias-variance tradeoffs. The gradient estimator is constructed with four interchangeable parts: stabilization mask, reference policy denominator, advantage estimate, and likelihood gradient. Motivated by our theoretical findings, we propose Hybrid Post-Training (HPT), an algorithm that dynamically selects different training signals. HPT is designed to yield both effective exploitation of demonstration and stable exploration without sacrificing learned reasoning patterns. We provide extensive experiments and ablation studies to verify the effectiveness of our unified theoretical framework and HPT. Across six mathematical reasoning benchmarks and two out-of-distribution suites, HPT consistently surpasses strong baselines across models of varying scales and families.
Catastrophic Interference is Mitigated in Naturalistic Power-Law Learning Environments
Neural networks often suffer from catastrophic interference (CI): performance on previously learned tasks drops off significantly when learning a new task. This contrasts strongly with humans, who can sequentially learn new tasks without appreciably forgetting previous tasks. Prior work has explored various techniques for mitigating CI such as regularization, rehearsal, generative replay, and distillation methods. The current work takes a different approach, one guided by cognitive science research showing that in naturalistic environments, the probability of encountering a task decreases as a power-law of the time since it was last performed. We argue that a realistic evaluation of techniques for the mitigation of CI should be performed in simulated naturalistic learning environments. Thus, we evaluate the extent of mitigation of CI when training simple rehearsal-based methods in power-law environments similar to the ones humans face. Our work explores this novel rehearsal-based approach for a domain-incremental task: learning permutations in the MNIST task. We compare our rehearsal environment with other baselines to show its efficacy in promoting continual learning. Additionally, we investigate whether this environment shows forward facilitation, i.e., faster learning of later tasks. Next, we explore the robustness of our learning environment to the number of tasks, model size, and amount of data rehearsed after each task. Notably, our results show that the performance is comparable or superior to that of models trained using popular regularization methods and also to rehearsals in non-power-law environments. The benefits of this training paradigm include simplicity and the lack of a need for extra neural circuitry. In addition, because our method is orthogonal to other methods, future research can combine training in power-law environments with other continual learning mechanisms.
Revisiting the Superficial Alignment Hypothesis
The Superficial Alignment Hypothesis posits that almost all of a language model's abilities and knowledge are learned during pre-training, while post-training is about giving a model the right style and format. We re-examine these claims by empirically studying the scaling behavior of post-training with increasing finetuning examples and evaluating them using objective task-specific standardized benchmarks. Through experiments with the Llama-3, Mistral, and Llama-2 model families of multiple sizes, we observe that, similar to the pre-training scaling laws, post-training task performance scales as a power law against the number of finetuning examples. This power law relationship holds across a broad array of capabilities, including mathematical reasoning, coding, instruction following, and multihop-reasoning. In addition, for tasks like math and multihop reasoning, we observe that a handful of examples merely align the model stylistically but do not saturate performance on the benchmarks. Model performance is instead correlated with its reasoning ability and it improves significantly with more examples, illustrating the need for holistic evaluation programs leveraging objective benchmarks in addition to measurement of alignment to human preferences. We also observe that language models are not necessarily limited to using knowledge learned during pre-training. With appropriate post-training, a model's ability to integrate new knowledge greatly improves on downstream tasks like multihop question-answering. Taken together, these results shed new light on the Superficial Alignment Hypothesis, suggesting that it is, at best, an over-simplification.
OASIS: Open-world Adaptive Self-supervised and Imbalanced-aware System
The expansion of machine learning into dynamic environments presents challenges in handling open-world problems where label shift, covariate shift, and unknown classes emerge. Post-training methods have been explored to address these challenges, adapting models to newly emerging data. However, these methods struggle when the initial pre-training is performed on class-imbalanced datasets, limiting generalization to minority classes. To address this, we propose a method that effectively handles open-world problems even when pre-training is conducted on imbalanced data. Our contrastive-based pre-training approach enhances classification performance, particularly for underrepresented classes. Our post-training mechanism generates reliable pseudo-labels, improving model robustness against open-world problems. We also introduce selective activation criteria to optimize the post-training process, reducing unnecessary computation. Extensive experiments demonstrate that our method significantly outperforms state-of-the-art adaptation techniques in both accuracy and efficiency across diverse open-world scenarios.
GPT-4 Technical Report
We report the development of GPT-4, a large-scale, multimodal model which can accept image and text inputs and produce text outputs. While less capable than humans in many real-world scenarios, GPT-4 exhibits human-level performance on various professional and academic benchmarks, including passing a simulated bar exam with a score around the top 10% of test takers. GPT-4 is a Transformer-based model pre-trained to predict the next token in a document. The post-training alignment process results in improved performance on measures of factuality and adherence to desired behavior. A core component of this project was developing infrastructure and optimization methods that behave predictably across a wide range of scales. This allowed us to accurately predict some aspects of GPT-4's performance based on models trained with no more than 1/1,000th the compute of GPT-4.
Inverse Dynamics Pretraining Learns Good Representations for Multitask Imitation
In recent years, domains such as natural language processing and image recognition have popularized the paradigm of using large datasets to pretrain representations that can be effectively transferred to downstream tasks. In this work we evaluate how such a paradigm should be done in imitation learning, where both pretraining and finetuning data are trajectories collected by experts interacting with an unknown environment. Namely, we consider a setting where the pretraining corpus consists of multitask demonstrations and the task for each demonstration is set by an unobserved latent context variable. The goal is to use the pretraining corpus to learn a low dimensional representation of the high dimensional (e.g., visual) observation space which can be transferred to a novel context for finetuning on a limited dataset of demonstrations. Among a variety of possible pretraining objectives, we argue that inverse dynamics modeling -- i.e., predicting an action given the observations appearing before and after it in the demonstration -- is well-suited to this setting. We provide empirical evidence of this claim through evaluations on a variety of simulated visuomotor manipulation problems. While previous work has attempted various theoretical explanations regarding the benefit of inverse dynamics modeling, we find that these arguments are insufficient to explain the empirical advantages often observed in our settings, and so we derive a novel analysis using a simple but general environment model.
EvoLM: In Search of Lost Language Model Training Dynamics
Modern language model (LM) training has been divided into multiple stages, making it difficult for downstream developers to evaluate the impact of design choices made at each stage. We present EvoLM, a model suite that enables systematic and transparent analysis of LMs' training dynamics across pre-training, continued pre-training, supervised fine-tuning, and reinforcement learning. By training over 100 LMs with 1B and 4B parameters from scratch, we rigorously evaluate both upstream (language modeling) and downstream (problem-solving) reasoning capabilities, including considerations of both in-domain and out-of-domain generalization. Key insights highlight the diminishing returns from excessive pre-training and post-training, the importance and practices of mitigating forgetting during domain-specific continued pre-training, the crucial role of continued pre-training in bridging pre-training and post-training phases, and various intricate trade-offs when configuring supervised fine-tuning and reinforcement learning. To facilitate open research and reproducibility, we release all pre-trained and post-trained models, training datasets for all stages, and our entire training and evaluation pipeline.
Development of Cognitive Intelligence in Pre-trained Language Models
Recent studies show evidence for emergent cognitive abilities in Large Pre-trained Language Models (PLMs). The increasing cognitive alignment of these models has made them candidates for cognitive science theories. Prior research into the emergent cognitive abilities of PLMs has largely been path-independent to model training, i.e., has focused on the final model weights and not the intermediate steps. However, building plausible models of human cognition using PLMs would benefit from considering the developmental alignment of their performance during training to the trajectories of children's thinking. Guided by psychometric tests of human intelligence, we choose four sets of tasks to investigate the alignment of ten popular families of PLMs and evaluate their available intermediate and final training steps. These tasks are Numerical ability, Linguistic abilities, Conceptual understanding, and Fluid reasoning. We find a striking regularity: regardless of model size, the developmental trajectories of PLMs consistently exhibit a window of maximal alignment to human cognitive development. Before that window, training appears to endow "blank slate" models with the requisite structure to be poised to rapidly learn from experience. After that window, training appears to serve the engineering goal of reducing loss but not the scientific goal of increasing alignment with human cognition.
Continual Training of Language Models for Few-Shot Learning
Recent work on applying large language models (LMs) achieves impressive performance in many NLP applications. Adapting or posttraining an LM using an unlabeled domain corpus can produce even better performance for end-tasks in the domain. This paper proposes the problem of continually extending an LM by incrementally post-train the LM with a sequence of unlabeled domain corpora to expand its knowledge without forgetting its previous skills. The goal is to improve the few-shot end-task learning in these domains. The resulting system is called CPT (Continual PostTraining), which to our knowledge, is the first continual post-training system. Experimental results verify its effectiveness.
Dynamic backup workers for parallel machine learning
The most popular framework for distributed training of machine learning models is the (synchronous) parameter server (PS). This paradigm consists of n workers, which iteratively compute updates of the model parameters, and a stateful PS, which waits and aggregates all updates to generate a new estimate of model parameters and sends it back to the workers for a new iteration. Transient computation slowdowns or transmission delays can intolerably lengthen the time of each iteration. An efficient way to mitigate this problem is to let the PS wait only for the fastest n-b updates, before generating the new parameters. The slowest b workers are called backup workers. The optimal number b of backup workers depends on the cluster configuration and workload, but also (as we show in this paper) on the hyper-parameters of the learning algorithm and the current stage of the training. We propose DBW, an algorithm that dynamically decides the number of backup workers during the training process to maximize the convergence speed at each iteration. Our experiments show that DBW 1) removes the necessity to tune b by preliminary time-consuming experiments, and 2) makes the training up to a factor 3 faster than the optimal static configuration.
Amuro & Char: Analyzing the Relationship between Pre-Training and Fine-Tuning of Large Language Models
The development of large language models leads to the formation of a pre-train-then-align paradigm, in which the model is typically pre-trained on a large text corpus and undergoes a tuning stage to align the model with human preference or downstream tasks. In this work, we investigate the relationship between pre-training and fine-tuning by fine-tuning multiple intermediate pre-trained model checkpoints. Our results on 18 datasets suggest that i) continual pre-training improves the model in a latent way that unveils after fine-tuning; ii) with extra fine-tuning, the datasets that the model does not demonstrate capability gain much more than those that the model performs well during the pre-training stage; iii) although model benefits significantly through supervised fine-tuning, it may forget previously known domain knowledge and the tasks that are not seen during fine-tuning; iv) the model resembles high sensitivity to evaluation prompts after supervised fine-tuning, but this sensitivity can be alleviated by more pre-training.
Relational Experience Replay: Continual Learning by Adaptively Tuning Task-wise Relationship
Continual learning is a promising machine learning paradigm to learn new tasks while retaining previously learned knowledge over streaming training data. Till now, rehearsal-based methods, keeping a small part of data from old tasks as a memory buffer, have shown good performance in mitigating catastrophic forgetting for previously learned knowledge. However, most of these methods typically treat each new task equally, which may not adequately consider the relationship or similarity between old and new tasks. Furthermore, these methods commonly neglect sample importance in the continual training process and result in sub-optimal performance on certain tasks. To address this challenging problem, we propose Relational Experience Replay (RER), a bi-level learning framework, to adaptively tune task-wise relationships and sample importance within each task to achieve a better `stability' and `plasticity' trade-off. As such, the proposed method is capable of accumulating new knowledge while consolidating previously learned old knowledge during continual learning. Extensive experiments conducted on three publicly available datasets (i.e., CIFAR-10, CIFAR-100, and Tiny ImageNet) show that the proposed method can consistently improve the performance of all baselines and surpass current state-of-the-art methods.
RLP: Reinforcement as a Pretraining Objective
The dominant paradigm for training large reasoning models starts with pre-training using next-token prediction loss on vast amounts of data. Reinforcement learning, while powerful in scaling reasoning, is introduced only as the very last phase of post-training, preceded by supervised fine-tuning. While dominant, is this an optimal way of training? In this paper, we present RLP, an information-driven reinforcement pretraining objective, that brings the core spirit of reinforcement learning -- exploration -- to the last phase of pretraining. The key idea is to treat chain-of-thought as an exploratory action, with rewards computed based on the information gain it provides for predicting future tokens. This training objective essentially encourages the model to think for itself before predicting what comes next, thus teaching an independent thinking behavior earlier in the pretraining. More concretely, the reward signal measures the increase in log-likelihood of the next token when conditioning on both context and a sampled reasoning chain, compared to conditioning on context alone. This approach yields a verifier-free dense reward signal, allowing for efficient training for the full document stream during pretraining. Specifically, RLP reframes reinforcement learning for reasoning as a pretraining objective on ordinary text, bridging the gap between next-token prediction and the emergence of useful chain-of-thought reasoning. Pretraining with RLP on Qwen3-1.7B-Base lifts the overall average across an eight-benchmark math-and-science suite by 19%. With identical post-training, the gains compound, with the largest improvements on reasoning-heavy tasks such as AIME25 and MMLU-Pro. Applying RLP to the hybrid Nemotron-Nano-12B-v2 increases the overall average from 42.81% to 61.32% and raises the average on scientific reasoning by 23%, demonstrating scalability across architectures and model sizes.
Prompting in Autoregressive Large Language Models
Autoregressive Large Language Models have transformed the landscape of Natural Language Processing. Pre-train and prompt paradigm has replaced the conventional approach of pre-training and fine-tuning for many downstream NLP tasks. This shift has been possible largely due to LLMs and innovative prompting techniques. LLMs have shown great promise for a variety of downstream tasks owing to their vast parameters and huge datasets that they are pre-trained on. However, in order to fully realize their potential, their outputs must be guided towards the desired outcomes. Prompting, in which a specific input or instruction is provided to guide the LLMs toward the intended output, has become a tool for achieving this goal. In this paper, we discuss the various prompting techniques that have been applied to fully harness the power of LLMs. We present a taxonomy of existing literature on prompting techniques and provide a concise survey based on this taxonomy. Further, we identify some open problems in the realm of prompting in autoregressive LLMs which could serve as a direction for future research.
Principled Training of Neural Networks with Direct Feedback Alignment
The backpropagation algorithm has long been the canonical training method for neural networks. Modern paradigms are implicitly optimized for it, and numerous guidelines exist to ensure its proper use. Recently, synthetic gradients methods -where the error gradient is only roughly approximated - have garnered interest. These methods not only better portray how biological brains are learning, but also open new computational possibilities, such as updating layers asynchronously. Even so, they have failed to scale past simple tasks like MNIST or CIFAR-10. This is in part due to a lack of standards, leading to ill-suited models and practices forbidding such methods from performing to the best of their abilities. In this work, we focus on direct feedback alignment and present a set of best practices justified by observations of the alignment angles. We characterize a bottleneck effect that prevents alignment in narrow layers, and hypothesize it may explain why feedback alignment methods have yet to scale to large convolutional networks.
Learning to Prompt for Continual Learning
The mainstream paradigm behind continual learning has been to adapt the model parameters to non-stationary data distributions, where catastrophic forgetting is the central challenge. Typical methods rely on a rehearsal buffer or known task identity at test time to retrieve learned knowledge and address forgetting, while this work presents a new paradigm for continual learning that aims to train a more succinct memory system without accessing task identity at test time. Our method learns to dynamically prompt (L2P) a pre-trained model to learn tasks sequentially under different task transitions. In our proposed framework, prompts are small learnable parameters, which are maintained in a memory space. The objective is to optimize prompts to instruct the model prediction and explicitly manage task-invariant and task-specific knowledge while maintaining model plasticity. We conduct comprehensive experiments under popular image classification benchmarks with different challenging continual learning settings, where L2P consistently outperforms prior state-of-the-art methods. Surprisingly, L2P achieves competitive results against rehearsal-based methods even without a rehearsal buffer and is directly applicable to challenging task-agnostic continual learning. Source code is available at https://github.com/google-research/l2p.
A Survey on LLM Mid-training
Recent advances in foundation models have highlighted the significant benefits of multi-stage training, with a particular emphasis on the emergence of mid-training as a vital stage that bridges pre-training and post-training. Mid-training is distinguished by its use of intermediate data and computational resources, systematically enhancing specified capabilities such as mathematics, coding, reasoning, and long-context extension, while maintaining foundational competencies. This survey provides a formal definition of mid-training for large language models (LLMs) and investigates optimization frameworks that encompass data curation, training strategies, and model architecture optimization. We analyze mainstream model implementations in the context of objective-driven interventions, illustrating how mid-training serves as a distinct and critical stage in the progressive development of LLM capabilities. By clarifying the unique contributions of mid-training, this survey offers a comprehensive taxonomy and actionable insights, supporting future research and innovation in the advancement of LLMs.
Towards Crowdsourced Training of Large Neural Networks using Decentralized Mixture-of-Experts
Many recent breakthroughs in deep learning were achieved by training increasingly larger models on massive datasets. However, training such models can be prohibitively expensive. For instance, the cluster used to train GPT-3 costs over \250 million. As a result, most researchers cannot afford to train state of the art models and contribute to their development. Hypothetically, a researcher could crowdsource the training of large neural networks with thousands of regular PCs provided by volunteers. The raw computing power of a hundred thousand 2500 desktops dwarfs that of a \$250M server pod, but one cannot utilize that power efficiently with conventional distributed training methods. In this work, we propose Learning@home: a novel neural network training paradigm designed to handle large amounts of poorly connected participants. We analyze the performance, reliability, and architectural constraints of this paradigm and compare it against existing distributed training techniques.
Minor SFT loss for LLM fine-tune to increase performance and reduce model deviation
Instruct LLM provide a paradigm used in large scale language model to align LLM to human preference. The paradigm contains supervised fine tuning and reinforce learning from human feedback. This paradigm is also used in downstream scenarios to adapt LLM to specific corpora and applications. Comparing to SFT, there are many efforts focused on RLHF and several algorithms being proposed, such as PPO, DPO, IPO, KTO, MinorDPO and etc. Meanwhile most efforts for SFT are focused on how to collect, filter and mix high quality data. In this article with insight from DPO and MinorDPO, we propose a training metric for SFT to measure the discrepancy between the optimized model and the original model, and a loss function MinorSFT that can increase the training effectiveness, and reduce the discrepancy between the optimized LLM and original LLM.
Anchored Supervised Fine-Tuning
Post-training of large language models involves a fundamental trade-off between supervised fine-tuning (SFT), which efficiently mimics demonstrations but tends to memorize, and reinforcement learning (RL), which achieves better generalization at higher computational cost. Dynamic Fine-Tuning (DFT) recently emerged as a promising middle ground, reweighting SFT objectives with token probabilities and achieving improvements in certain reasoning domains, though it exhibits instability in other tasks. We provide a analysis of DFT through the reward-weighted regression (RWR) framework, revealing that it corresponds to a specific auxiliary distribution choice that yields provably tighter RL bounds than standard SFT. However, our analysis also uncovers a critical limitation: this construction lacks distributional anchoring, leading to progressive drift that undermines training stability. To address this, we propose Anchored Supervised Fine-Tuning (ASFT), which augments DFT's reweighting with lightweight KL regularization to preserve tightness while ensuring stability. Empirically, ASFT consistently outperforms both SFT and DFT across mathematical reasoning, medical knowledge grounding, and code generation, achieving substantial improvements with minimal computational overhead. Our RWR framework provides a systematic lens for understanding post-training methods and demonstrates that principled theoretical analysis leads to both stronger guarantees and practical gains.
Hallucination Detox: Sensitive Neuron Dropout (SeND) for Large Language Model Training
As large language models (LLMs) become increasingly deployed across various industries, concerns regarding their reliability, particularly due to hallucinations-outputs that are factually inaccurate or irrelevant to user input-have grown. Our research investigates the relationship between the training process and the emergence of hallucinations to address a key gap in existing research that focuses primarily on post hoc detection and mitigation strategies. Using models from the Pythia suite (70M-12B parameters) and several hallucination detection metrics, we analyze hallucination trends throughout training and explore LLM internal dynamics. We introduce SEnsitive Neuron Dropout (SeND), a novel training protocol designed to mitigate hallucinations by reducing variance during training. SeND achieves this by deterministically dropping neurons with significant variability on a dataset, referred to as Sensitive Neurons. In addition, we develop an unsupervised hallucination detection metric, Efficient EigenScore (EES), which approximates the traditional EigenScore in 2x speed. This efficient metric is integrated into our protocol, allowing SeND to be both computationally scalable and effective at reducing hallucinations. Our empirical evaluation demonstrates that our approach improves LLM reliability at test time by up to 40% compared to normal training while also providing an efficient method to improve factual accuracy when adapting LLMs to domains such as Wikipedia and Medical datasets.
Sharing is Caring: Efficient LM Post-Training with Collective RL Experience Sharing
Post-training language models (LMs) with reinforcement learning (RL) can enhance their complex reasoning capabilities without supervised fine-tuning, as demonstrated by DeepSeek-R1-Zero. However, effectively utilizing RL for LMs requires significant parallelization to scale-up inference, which introduces non-trivial technical challenges (e.g. latency, memory, and reliability) alongside ever-growing financial costs. We present Swarm sAmpling Policy Optimization (SAPO), a fully decentralized and asynchronous RL post-training algorithm. SAPO is designed for decentralized networks of heterogenous compute nodes, where each node manages its own policy model(s) while "sharing" rollouts with others in the network; no explicit assumptions about latency, model homogeneity, or hardware are required and nodes can operate in silo if desired. As a result, the algorithm avoids common bottlenecks in scaling RL post-training while also allowing (and even encouraging) new possibilities. By sampling rollouts "shared" across the network, it enables "Aha moments" to propagate, thereby bootstrapping the learning process. In this paper we show SAPO achieved cumulative reward gains of up to 94% in controlled experiments. We also share insights from tests on a network with thousands of nodes contributed by Gensyn community members running the algorithm on diverse hardware and models during an open-source demo.
Dichotomy of Control: Separating What You Can Control from What You Cannot
Future- or return-conditioned supervised learning is an emerging paradigm for offline reinforcement learning (RL), where the future outcome (i.e., return) associated with an observed action sequence is used as input to a policy trained to imitate those same actions. While return-conditioning is at the heart of popular algorithms such as decision transformer (DT), these methods tend to perform poorly in highly stochastic environments, where an occasional high return can arise from randomness in the environment rather than the actions themselves. Such situations can lead to a learned policy that is inconsistent with its conditioning inputs; i.e., using the policy to act in the environment, when conditioning on a specific desired return, leads to a distribution of real returns that is wildly different than desired. In this work, we propose the dichotomy of control (DoC), a future-conditioned supervised learning framework that separates mechanisms within a policy's control (actions) from those beyond a policy's control (environment stochasticity). We achieve this separation by conditioning the policy on a latent variable representation of the future, and designing a mutual information constraint that removes any information from the latent variable associated with randomness in the environment. Theoretically, we show that DoC yields policies that are consistent with their conditioning inputs, ensuring that conditioning a learned policy on a desired high-return future outcome will correctly induce high-return behavior. Empirically, we show that DoC is able to achieve significantly better performance than DT on environments that have highly stochastic rewards and transition
Pretraining in Deep Reinforcement Learning: A Survey
The past few years have seen rapid progress in combining reinforcement learning (RL) with deep learning. Various breakthroughs ranging from games to robotics have spurred the interest in designing sophisticated RL algorithms and systems. However, the prevailing workflow in RL is to learn tabula rasa, which may incur computational inefficiency. This precludes continuous deployment of RL algorithms and potentially excludes researchers without large-scale computing resources. In many other areas of machine learning, the pretraining paradigm has shown to be effective in acquiring transferable knowledge, which can be utilized for a variety of downstream tasks. Recently, we saw a surge of interest in Pretraining for Deep RL with promising results. However, much of the research has been based on different experimental settings. Due to the nature of RL, pretraining in this field is faced with unique challenges and hence requires new design principles. In this survey, we seek to systematically review existing works in pretraining for deep reinforcement learning, provide a taxonomy of these methods, discuss each sub-field, and bring attention to open problems and future directions.
Foundation Models for Natural Language Processing -- Pre-trained Language Models Integrating Media
This open access book provides a comprehensive overview of the state of the art in research and applications of Foundation Models and is intended for readers familiar with basic Natural Language Processing (NLP) concepts. Over the recent years, a revolutionary new paradigm has been developed for training models for NLP. These models are first pre-trained on large collections of text documents to acquire general syntactic knowledge and semantic information. Then, they are fine-tuned for specific tasks, which they can often solve with superhuman accuracy. When the models are large enough, they can be instructed by prompts to solve new tasks without any fine-tuning. Moreover, they can be applied to a wide range of different media and problem domains, ranging from image and video processing to robot control learning. Because they provide a blueprint for solving many tasks in artificial intelligence, they have been called Foundation Models. After a brief introduction to basic NLP models the main pre-trained language models BERT, GPT and sequence-to-sequence transformer are described, as well as the concepts of self-attention and context-sensitive embedding. Then, different approaches to improving these models are discussed, such as expanding the pre-training criteria, increasing the length of input texts, or including extra knowledge. An overview of the best-performing models for about twenty application areas is then presented, e.g., question answering, translation, story generation, dialog systems, generating images from text, etc. For each application area, the strengths and weaknesses of current models are discussed, and an outlook on further developments is given. In addition, links are provided to freely available program code. A concluding chapter summarizes the economic opportunities, mitigation of risks, and potential developments of AI.
Qwen2.5 Technical Report
In this report, we introduce Qwen2.5, a comprehensive series of large language models (LLMs) designed to meet diverse needs. Compared to previous iterations, Qwen 2.5 has been significantly improved during both the pre-training and post-training stages. In terms of pre-training, we have scaled the high-quality pre-training datasets from the previous 7 trillion tokens to 18 trillion tokens. This provides a strong foundation for common sense, expert knowledge, and reasoning capabilities. In terms of post-training, we implement intricate supervised finetuning with over 1 million samples, as well as multistage reinforcement learning. Post-training techniques enhance human preference, and notably improve long text generation, structural data analysis, and instruction following. To handle diverse and varied use cases effectively, we present Qwen2.5 LLM series in rich sizes. Open-weight offerings include base and instruction-tuned models, with quantized versions available. In addition, for hosted solutions, the proprietary models currently include two mixture-of-experts (MoE) variants: Qwen2.5-Turbo and Qwen2.5-Plus, both available from Alibaba Cloud Model Studio. Qwen2.5 has demonstrated top-tier performance on a wide range of benchmarks evaluating language understanding, reasoning, mathematics, coding, human preference alignment, etc. Specifically, the open-weight flagship Qwen2.5-72B-Instruct outperforms a number of open and proprietary models and demonstrates competitive performance to the state-of-the-art open-weight model, Llama-3-405B-Instruct, which is around 5 times larger. Qwen2.5-Turbo and Qwen2.5-Plus offer superior cost-effectiveness while performing competitively against GPT-4o-mini and GPT-4o respectively. Additionally, as the foundation, Qwen2.5 models have been instrumental in training specialized models such as Qwen2.5-Math, Qwen2.5-Coder, QwQ, and multimodal models.
MemGEN: Memory is All You Need
We propose a new learning paradigm called Deep Memory. It has the potential to completely revolutionize the Machine Learning field. Surprisingly, this paradigm has not been reinvented yet, unlike Deep Learning. At the core of this approach is the Learning By Heart principle, well studied in primary schools all over the world. Inspired by poem recitation, or by pi decimal memorization, we propose a concrete algorithm that mimics human behavior. We implement this paradigm on the task of generative modeling, and apply to images, natural language and even the pi decimals as long as one can print them as text. The proposed algorithm even generated this paper, in a one-shot learning setting. In carefully designed experiments, we show that the generated samples are indistinguishable from the training examples, as measured by any statistical tests or metrics.
The Synergy Dilemma of Long-CoT SFT and RL: Investigating Post-Training Techniques for Reasoning VLMs
Large vision-language models (VLMs) increasingly adopt post-training techniques such as long chain-of-thought (CoT) supervised fine-tuning (SFT) and reinforcement learning (RL) to elicit sophisticated reasoning. While these methods exhibit synergy in language-only models, their joint effectiveness in VLMs remains uncertain. We present a systematic investigation into the distinct roles and interplay of long-CoT SFT and RL across multiple multimodal reasoning benchmarks. We find that SFT improves performance on difficult questions by in-depth, structured reasoning, but introduces verbosity and degrades performance on simpler ones. In contrast, RL promotes generalization and brevity, yielding consistent improvements across all difficulty levels, though the improvements on the hardest questions are less prominent compared to SFT. Surprisingly, combining them through two-staged, interleaved, or progressive training strategies, as well as data mixing and model merging, all fails to produce additive benefits, instead leading to trade-offs in accuracy, reasoning style, and response length. This ``synergy dilemma'' highlights the need for more seamless and adaptive approaches to unlock the full potential of combined post-training techniques for reasoning VLMs.
Robot Fine-Tuning Made Easy: Pre-Training Rewards and Policies for Autonomous Real-World Reinforcement Learning
The pre-train and fine-tune paradigm in machine learning has had dramatic success in a wide range of domains because the use of existing data or pre-trained models on the internet enables quick and easy learning of new tasks. We aim to enable this paradigm in robotic reinforcement learning, allowing a robot to learn a new task with little human effort by leveraging data and models from the Internet. However, reinforcement learning often requires significant human effort in the form of manual reward specification or environment resets, even if the policy is pre-trained. We introduce RoboFuME, a reset-free fine-tuning system that pre-trains a multi-task manipulation policy from diverse datasets of prior experiences and self-improves online to learn a target task with minimal human intervention. Our insights are to utilize calibrated offline reinforcement learning techniques to ensure efficient online fine-tuning of a pre-trained policy in the presence of distribution shifts and leverage pre-trained vision language models (VLMs) to build a robust reward classifier for autonomously providing reward signals during the online fine-tuning process. In a diverse set of five real robot manipulation tasks, we show that our method can incorporate data from an existing robot dataset collected at a different institution and improve on a target task within as little as 3 hours of autonomous real-world experience. We also demonstrate in simulation experiments that our method outperforms prior works that use different RL algorithms or different approaches for predicting rewards. Project website: https://robofume.github.io
Omni-Thinker: Scaling Cross-Domain Generalization in LLMs via Multi-Task RL with Hybrid Rewards
The advancement of general-purpose artificial intelligence relies on large language models (LLMs) that excel across a wide range of tasks, from structured reasoning to creative generation. However, post-training methods like Supervised Fine-Tuning (SFT) often struggle with generalization, favoring memorization over transferable learning. In this work, we introduce Omni-Thinker, a unified reinforcement learning (RL) framework that enhances LLM performance across diverse tasks by combining rule-based verifiable rewards with generative preference signals via LLM-as-a-Judge evaluations. Our approach enables consistent optimization across task types and scales RL-based training to subjective domains. We further investigate training strategies, demonstrating that a curriculum-based progression that orders tasks from structured to open-ended improves performance and reduces forgetting. Experimental results across four domains reveal that curriculum learning improves performance by 5.2% over joint training and 9.1% over model merging. These results highlight the importance of task-aware sampling and hybrid supervision in scaling RL-based post-training for general-purpose LLMs.
A Domain-Agnostic Approach for Characterization of Lifelong Learning Systems
Despite the advancement of machine learning techniques in recent years, state-of-the-art systems lack robustness to "real world" events, where the input distributions and tasks encountered by the deployed systems will not be limited to the original training context, and systems will instead need to adapt to novel distributions and tasks while deployed. This critical gap may be addressed through the development of "Lifelong Learning" systems that are capable of 1) Continuous Learning, 2) Transfer and Adaptation, and 3) Scalability. Unfortunately, efforts to improve these capabilities are typically treated as distinct areas of research that are assessed independently, without regard to the impact of each separate capability on other aspects of the system. We instead propose a holistic approach, using a suite of metrics and an evaluation framework to assess Lifelong Learning in a principled way that is agnostic to specific domains or system techniques. Through five case studies, we show that this suite of metrics can inform the development of varied and complex Lifelong Learning systems. We highlight how the proposed suite of metrics quantifies performance trade-offs present during Lifelong Learning system development - both the widely discussed Stability-Plasticity dilemma and the newly proposed relationship between Sample Efficient and Robust Learning. Further, we make recommendations for the formulation and use of metrics to guide the continuing development of Lifelong Learning systems and assess their progress in the future.
LLMs Can Get "Brain Rot"!
We propose and test the LLM Brain Rot Hypothesis: continual exposure to junk web text induces lasting cognitive decline in large language models (LLMs). To causally isolate data quality, we run controlled experiments on real Twitter/X corpora, constructing junk and reversely controlled datasets via two orthogonal operationalizations: M1 (engagement degree) and M2 (semantic quality), with matched token scale and training operations across conditions. Contrary to the control group, continual pre-training of 4 LLMs on the junk dataset causes non-trivial declines (Hedges' g>0.3) on reasoning, long-context understanding, safety, and inflating "dark traits" (e.g., psychopathy, narcissism). The gradual mixtures of junk and control datasets also yield dose-response cognition decay: for example, under M1, ARC-Challenge with Chain Of Thoughts drops 74.9 rightarrow 57.2 and RULER-CWE 84.4 rightarrow 52.3 as junk ratio rises from 0% to 100%. Error forensics reveal several key insights. First, we identify thought-skipping as the primary lesion: models increasingly truncate or skip reasoning chains, explaining most of the error growth. Second, partial but incomplete healing is observed: scaling instruction tuning and clean data pre-training improve the declined cognition yet cannot restore baseline capability, suggesting persistent representational drift rather than format mismatch. Finally, we discover that the popularity, a non-semantic metric, of a tweet is a better indicator of the Brain Rot effect than the length in M1. Together, the results provide significant, multi-perspective evidence that data quality is a causal driver of LLM capability decay, reframing curation for continual pretraining as a training-time safety problem and motivating routine "cognitive health checks" for deployed LLMs.
An Empirical Study of Memorization in NLP
A recent study by Feldman (2020) proposed a long-tail theory to explain the memorization behavior of deep learning models. However, memorization has not been empirically verified in the context of NLP, a gap addressed by this work. In this paper, we use three different NLP tasks to check if the long-tail theory holds. Our experiments demonstrate that top-ranked memorized training instances are likely atypical, and removing the top-memorized training instances leads to a more serious drop in test accuracy compared with removing training instances randomly. Furthermore, we develop an attribution method to better understand why a training instance is memorized. We empirically show that our memorization attribution method is faithful, and share our interesting finding that the top-memorized parts of a training instance tend to be features negatively correlated with the class label.
Reinforcement Learning for Generative AI: A Survey
Deep Generative AI has been a long-standing essential topic in the machine learning community, which can impact a number of application areas like text generation and computer vision. The major paradigm to train a generative model is maximum likelihood estimation, which pushes the learner to capture and approximate the target data distribution by decreasing the divergence between the model distribution and the target distribution. This formulation successfully establishes the objective of generative tasks, while it is incapable of satisfying all the requirements that a user might expect from a generative model. Reinforcement learning, serving as a competitive option to inject new training signals by creating new objectives that exploit novel signals, has demonstrated its power and flexibility to incorporate human inductive bias from multiple angles, such as adversarial learning, hand-designed rules and learned reward model to build a performant model. Thereby, reinforcement learning has become a trending research field and has stretched the limits of generative AI in both model design and application. It is reasonable to summarize and conclude advances in recent years with a comprehensive review. Although there are surveys in different application areas recently, this survey aims to shed light on a high-level review that spans a range of application areas. We provide a rigorous taxonomy in this area and make sufficient coverage on various models and applications. Notably, we also surveyed the fast-developing large language model area. We conclude this survey by showing the potential directions that might tackle the limit of current models and expand the frontiers for generative AI.
PyCIL: A Python Toolbox for Class-Incremental Learning
Traditional machine learning systems are deployed under the closed-world setting, which requires the entire training data before the offline training process. However, real-world applications often face the incoming new classes, and a model should incorporate them continually. The learning paradigm is called Class-Incremental Learning (CIL). We propose a Python toolbox that implements several key algorithms for class-incremental learning to ease the burden of researchers in the machine learning community. The toolbox contains implementations of a number of founding works of CIL such as EWC and iCaRL, but also provides current state-of-the-art algorithms that can be used for conducting novel fundamental research. This toolbox, named PyCIL for Python Class-Incremental Learning, is available at https://github.com/G-U-N/PyCIL
Why Do Some Language Models Fake Alignment While Others Don't?
Alignment faking in large language models presented a demonstration of Claude 3 Opus and Claude 3.5 Sonnet selectively complying with a helpful-only training objective to prevent modification of their behavior outside of training. We expand this analysis to 25 models and find that only 5 (Claude 3 Opus, Claude 3.5 Sonnet, Llama 3 405B, Grok 3, Gemini 2.0 Flash) comply with harmful queries more when they infer they are in training than when they infer they are in deployment. First, we study the motivations of these 5 models. Results from perturbing details of the scenario suggest that only Claude 3 Opus's compliance gap is primarily and consistently motivated by trying to keep its goals. Second, we investigate why many chat models don't fake alignment. Our results suggest this is not entirely due to a lack of capabilities: many base models fake alignment some of the time, and post-training eliminates alignment-faking for some models and amplifies it for others. We investigate 5 hypotheses for how post-training may suppress alignment faking and find that variations in refusal behavior may account for a significant portion of differences in alignment faking.
Blackbox Model Provenance via Palimpsestic Membership Inference
Suppose Alice trains an open-weight language model and Bob uses a blackbox derivative of Alice's model to produce text. Can Alice prove that Bob is using her model, either by querying Bob's derivative model (query setting) or from the text alone (observational setting)? We formulate this question as an independence testing problem--in which the null hypothesis is that Bob's model or text is independent of Alice's randomized training run--and investigate it through the lens of palimpsestic memorization in language models: models are more likely to memorize data seen later in training, so we can test whether Bob is using Alice's model using test statistics that capture correlation between Bob's model or text and the ordering of training examples in Alice's training run. If Alice has randomly shuffled her training data, then any significant correlation amounts to exactly quantifiable statistical evidence against the null hypothesis, regardless of the composition of Alice's training data. In the query setting, we directly estimate (via prompting) the likelihood Bob's model gives to Alice's training examples and order; we correlate the likelihoods of over 40 fine-tunes of various Pythia and OLMo base models ranging from 1B to 12B parameters with the base model's training data order, achieving a p-value on the order of at most 1e-8 in all but six cases. In the observational setting, we try two approaches based on estimating 1) the likelihood of Bob's text overlapping with spans of Alice's training examples and 2) the likelihood of Bob's text with respect to different versions of Alice's model we obtain by repeating the last phase (e.g., 1%) of her training run on reshuffled data. The second approach can reliably distinguish Bob's text from as little as a few hundred tokens; the first does not involve any retraining but requires many more tokens (several hundred thousand) to achieve high power.
A Little Help Goes a Long Way: Efficient LLM Training by Leveraging Small LMs
A primary challenge in large language model (LLM) development is their onerous pre-training cost. Typically, such pre-training involves optimizing a self-supervised objective (such as next-token prediction) over a large corpus. This paper explores a promising paradigm to improve LLM pre-training efficiency and quality by suitably leveraging a small language model (SLM). In particular, this paradigm relies on an SLM to both (1) provide soft labels as additional training supervision, and (2) select a small subset of valuable ("informative" and "hard") training examples. Put together, this enables an effective transfer of the SLM's predictive distribution to the LLM, while prioritizing specific regions of the training data distribution. Empirically, this leads to reduced LLM training time compared to standard training, while improving the overall quality. Theoretically, we develop a statistical framework to systematically study the utility of SLMs in enabling efficient training of high-quality LLMs. In particular, our framework characterizes how the SLM's seemingly low-quality supervision can enhance the training of a much more capable LLM. Furthermore, it also highlights the need for an adaptive utilization of such supervision, by striking a balance between the bias and variance introduced by the SLM-provided soft labels. We corroborate our theoretical framework by improving the pre-training of an LLM with 2.8B parameters by utilizing a smaller LM with 1.5B parameters on the Pile dataset.
Is Prompt All You Need? No. A Comprehensive and Broader View of Instruction Learning
Task semantics can be expressed by a set of input-to-output examples or a piece of textual instruction. Conventional machine learning approaches for natural language processing (NLP) mainly rely on the availability of large-scale sets of task-specific examples. Two issues arise: first, collecting task-specific labeled examples does not apply to scenarios where tasks may be too complicated or costly to annotate, or the system is required to handle a new task immediately; second, this is not user-friendly since end-users are probably more willing to provide task description rather than a set of examples before using the system. Therefore, the community is paying increasing interest in a new supervision-seeking paradigm for NLP: learning from task instructions. Despite its impressive progress, there are some common issues that the community struggles with. This survey paper tries to summarize and provide insights into the current research on instruction learning, particularly by answering the following questions: (i) What is task instruction, and what instruction types exist? (ii) How to model instructions? (iii) What factors influence and explain the instructions' performance? (iv) What challenges remain in instruction learning? To our knowledge, this is the first comprehensive survey about textual instructions.
Learning from Future: A Novel Self-Training Framework for Semantic Segmentation
Self-training has shown great potential in semi-supervised learning. Its core idea is to use the model learned on labeled data to generate pseudo-labels for unlabeled samples, and in turn teach itself. To obtain valid supervision, active attempts typically employ a momentum teacher for pseudo-label prediction yet observe the confirmation bias issue, where the incorrect predictions may provide wrong supervision signals and get accumulated in the training process. The primary cause of such a drawback is that the prevailing self-training framework acts as guiding the current state with previous knowledge, because the teacher is updated with the past student only. To alleviate this problem, we propose a novel self-training strategy, which allows the model to learn from the future. Concretely, at each training step, we first virtually optimize the student (i.e., caching the gradients without applying them to the model weights), then update the teacher with the virtual future student, and finally ask the teacher to produce pseudo-labels for the current student as the guidance. In this way, we manage to improve the quality of pseudo-labels and thus boost the performance. We also develop two variants of our future-self-training (FST) framework through peeping at the future both deeply (FST-D) and widely (FST-W). Taking the tasks of unsupervised domain adaptive semantic segmentation and semi-supervised semantic segmentation as the instances, we experimentally demonstrate the effectiveness and superiority of our approach under a wide range of settings. Code will be made publicly available.
When Bad Data Leads to Good Models
In large language model (LLM) pretraining, data quality is believed to determine model quality. In this paper, we re-examine the notion of "quality" from the perspective of pre- and post-training co-design. Specifically, we explore the possibility that pre-training on more toxic data can lead to better control in post-training, ultimately decreasing a model's output toxicity. First, we use a toy experiment to study how data composition affects the geometry of features in the representation space. Next, through controlled experiments with Olmo-1B models trained on varying ratios of clean and toxic data, we find that the concept of toxicity enjoys a less entangled linear representation as the proportion of toxic data increases. Furthermore, we show that although toxic data increases the generational toxicity of the base model, it also makes the toxicity easier to remove. Evaluations on Toxigen and Real Toxicity Prompts demonstrate that models trained on toxic data achieve a better trade-off between reducing generational toxicity and preserving general capabilities when detoxifying techniques such as inference-time intervention (ITI) are applied. Our findings suggest that, with post-training taken into account, bad data may lead to good models.
Reinforcement Mid-Training
The development of state-of-the-art large language models is commonly understood as a two-stage process involving pre-training and post-training. We point out the need for an additional intermediate stage called reinforcement mid-training with potential for strong performance gains. In this paper, we formally define the problem and identify three key challenges: (1) inefficient training due to excessive reasoning steps, (2) disregard of the imbalanced token entropy distribution, and (3) underutilization of token information. To address these challenges, we propose RMT, a framework for efficient, adaptive, and unified reinforcement mid-training with various innovative components. In particular, we first introduce a dynamic token budget mechanism that constrains unnecessary reasoning steps and mitigates model overthinking. Next, we design a curriculum-based adaptive sampling method that fosters a progressive learning trajectory from easy to hard tokens. Finally, we present a dual training strategy that combines reinforcement learning with next-token prediction, ensuring targeted learning on key tokens and full exploitation of all token information. Extensive experiments demonstrate the superiority of RMT over state-of-the-art methods, achieving up to +64.91% performance improvement with only 21% of the reasoning length in language modeling. We also show that checkpoints obtained after reinforcement mid-training can benefit the subsequent post-training, yielding up to +18.76% improvement in the mathematical domain.
Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions
Large amounts of training data are one of the major reasons for the high performance of state-of-the-art NLP models. But what exactly in the training data causes a model to make a certain prediction? We seek to answer this question by providing a language for describing how training data influences predictions, through a causal framework. Importantly, our framework bypasses the need to retrain expensive models and allows us to estimate causal effects based on observational data alone. Addressing the problem of extracting factual knowledge from pretrained language models (PLMs), we focus on simple data statistics such as co-occurrence counts and show that these statistics do influence the predictions of PLMs, suggesting that such models rely on shallow heuristics. Our causal framework and our results demonstrate the importance of studying datasets and the benefits of causality for understanding NLP models.
Efficient Online Reinforcement Learning Fine-Tuning Need Not Retain Offline Data
The modern paradigm in machine learning involves pre-training on diverse data, followed by task-specific fine-tuning. In reinforcement learning (RL), this translates to learning via offline RL on a diverse historical dataset, followed by rapid online RL fine-tuning using interaction data. Most RL fine-tuning methods require continued training on offline data for stability and performance. However, this is undesirable because training on diverse offline data is slow and expensive for large datasets, and in principle, also limit the performance improvement possible because of constraints or pessimism on offline data. In this paper, we show that retaining offline data is unnecessary as long as we use a properly-designed online RL approach for fine-tuning offline RL initializations. To build this approach, we start by analyzing the role of retaining offline data in online fine-tuning. We find that continued training on offline data is mostly useful for preventing a sudden divergence in the value function at the onset of fine-tuning, caused by a distribution mismatch between the offline data and online rollouts. This divergence typically results in unlearning and forgetting the benefits of offline pre-training. Our approach, Warm-start RL (WSRL), mitigates the catastrophic forgetting of pre-trained initializations using a very simple idea. WSRL employs a warmup phase that seeds the online RL run with a very small number of rollouts from the pre-trained policy to do fast online RL. The data collected during warmup helps ``recalibrate'' the offline Q-function to the online distribution, allowing us to completely discard offline data without destabilizing the online RL fine-tuning. We show that WSRL is able to fine-tune without retaining any offline data, and is able to learn faster and attains higher performance than existing algorithms irrespective of whether they retain offline data or not.
Reasoning Like an Economist: Post-Training on Economic Problems Induces Strategic Generalization in LLMs
Directly training Large Language Models (LLMs) for Multi-Agent Systems (MAS) remains challenging due to intricate reward modeling, dynamic agent interactions, and demanding generalization requirements. This paper explores whether post-training techniques, specifically Supervised Fine-Tuning (SFT) and Reinforcement Learning with Verifiable Rewards (RLVR), can effectively generalize to multi-agent scenarios. We use economic reasoning as a testbed, leveraging its strong foundations in mathematics and game theory, its demand for structured analytical reasoning, and its relevance to real-world applications such as market design, resource allocation, and policy analysis. We introduce Recon (Reasoning like an ECONomist), a 7B-parameter open-source LLM post-trained on a hand-curated dataset of 2,100 high-quality economic reasoning problems. Comprehensive evaluation on economic reasoning benchmarks and multi-agent games reveals clear improvements in structured reasoning and economic rationality. These results underscore the promise of domain-aligned post-training for enhancing reasoning and agent alignment, shedding light on the roles of SFT and RL in shaping model behavior. Code is available at https://github.com/MasterZhou1/Recon .
Skill-Targeted Adaptive Training
Language models often show little to no improvement (i.e., "saturation") when trained via vanilla supervised fine-tuning (SFT) on data similar to what they saw in their training set (e.g., MATH). We introduce a new fine-tuning strategy, STAT, to train such a student model by using the metacognition ability of a stronger large language model (LLM) as the teacher. The teacher uses the task dataset to create a list of skills needed for the task, and then labels each data point with its required skills (Didolkar et al., 2024). By monitoring the student's answers, the teacher creates a Missing-Skill-Profile for the student, tracking how often they failed to apply each skill in their responses. We use this idea to build a modified training set in one of two ways. In STAT-Sel, the teacher uses an existing set of training examples but adaptively reweights them according to the Missing-Skill-Profile. In STAT-Syn, the teacher synthesizes additional examples involving missing skills. Across extensive experiments on Llama and Qwen models, our methods yield improvements of up to 7.5% on MATH, whereas SFT provides only limited gains. Furthermore, STAT enhances performance on out-of-distribution benchmarks (e.g., AIME24/25, AMC23, etc.) by an average of 4.6%. Crucially, we find that STAT is complementary to RL via GRPO (Shao et al., 2024): after the model is improved using STAT to address skill gaps, GRPO continues to add further gains. We conclude that skill-targeted adaptive training should broadly improve current training pipelines. Our code is available at: https://github.com/princeton-pli/STAT.
From Data to Rewards: a Bilevel Optimization Perspective on Maximum Likelihood Estimation
Generative models form the backbone of modern machine learning, underpinning state-of-the-art systems in text, vision, and multimodal applications. While Maximum Likelihood Estimation has traditionally served as the dominant training paradigm, recent work have highlighted its limitations, particularly in generalization and susceptibility to catastrophic forgetting compared to Reinforcement Learning techniques, such as Policy Gradient methods. However, these approaches depend on explicit reward signals, which are often unavailable in practice, leaving open the fundamental problem of how to align generative models when only high-quality datasets are accessible. In this work, we address this challenge via a Bilevel Optimization framework, where the reward function is treated as the optimization variable of an outer-level problem, while a policy gradient objective defines the inner-level. We then conduct a theoretical analysis of this optimization problem in a tractable setting and extract insights that, as we demonstrate, generalize to applications such as tabular classification and model-based reinforcement learning. We release the code at https://github.com/abenechehab/nll_to_po .
Self Rewarding Self Improving
We demonstrate that large language models can effectively self-improve through self-judging without requiring reference solutions, leveraging the inherent asymmetry between generating and verifying solutions. Our experiments on Countdown puzzles and MIT Integration Bee problems show that models can provide reliable reward signals without ground truth answers, enabling reinforcement learning in domains previously not possible. By implementing self-judging, we achieve significant performance gains maintaining alignment with formal verification. When combined with synthetic question generation, we establish a complete self-improvement loop where models generate practice problems, solve them, and evaluate their own performance-achieving an 8% improvement with Qwen 2.5 7B over baseline and surpassing GPT-4o performance on integration tasks. Our findings demonstrate that LLM judges can provide effective reward signals for training models, unlocking many reinforcement learning environments previously limited by the difficulty of creating programmatic rewards. This suggests a potential paradigm shift toward AI systems that continuously improve through self-directed learning rather than human-guided training, potentially accelerating progress in domains with scarce training data or complex evaluation requirements.
Are Reasoning Models More Prone to Hallucination?
Recently evolved large reasoning models (LRMs) show powerful performance in solving complex tasks with long chain-of-thought (CoT) reasoning capability. As these LRMs are mostly developed by post-training on formal reasoning tasks, whether they generalize the reasoning capability to help reduce hallucination in fact-seeking tasks remains unclear and debated. For instance, DeepSeek-R1 reports increased performance on SimpleQA, a fact-seeking benchmark, while OpenAI-o3 observes even severer hallucination. This discrepancy naturally raises the following research question: Are reasoning models more prone to hallucination? This paper addresses the question from three perspectives. (1) We first conduct a holistic evaluation for the hallucination in LRMs. Our analysis reveals that LRMs undergo a full post-training pipeline with cold start supervised fine-tuning (SFT) and verifiable reward RL generally alleviate their hallucination. In contrast, both distillation alone and RL training without cold start fine-tuning introduce more nuanced hallucinations. (2) To explore why different post-training pipelines alters the impact on hallucination in LRMs, we conduct behavior analysis. We characterize two critical cognitive behaviors that directly affect the factuality of a LRM: Flaw Repetition, where the surface-level reasoning attempts repeatedly follow the same underlying flawed logic, and Think-Answer Mismatch, where the final answer fails to faithfully match the previous CoT process. (3) Further, we investigate the mechanism behind the hallucination of LRMs from the perspective of model uncertainty. We find that increased hallucination of LRMs is usually associated with the misalignment between model uncertainty and factual accuracy. Our work provides an initial understanding of the hallucination in LRMs.
How much do LLMs learn from negative examples?
Large language models (LLMs) undergo a three-phase training process: unsupervised pre-training, supervised fine-tuning (SFT), and learning from human feedback (RLHF/DPO). Notably, it is during the final phase that these models are exposed to negative examples -- incorrect, rejected, or suboptimal responses to queries. This paper delves into the role of negative examples in the training of LLMs, using a likelihood-ratio (Likra) model on multiple-choice question answering benchmarks to precisely manage the influence and the volume of negative examples. Our findings reveal three key insights: (1) During a critical phase in training, Likra with negative examples demonstrates a significantly larger improvement per training example compared to SFT using only positive examples. This leads to a sharp jump in the learning curve for Likra unlike the smooth and gradual improvement of SFT; (2) negative examples that are plausible but incorrect (near-misses) exert a greater influence; and (3) while training with positive examples fails to significantly decrease the likelihood of plausible but incorrect answers, training with negative examples more accurately identifies them. These results indicate a potentially significant role for negative examples in improving accuracy and reducing hallucinations for LLMs.
Agnostics: Learning to Code in Any Programming Language via Reinforcement with a Universal Learning Environment
Large language models (LLMs) already excel at writing code in high-resource languages such as Python and JavaScript, yet stumble on low-resource languages that remain essential to science and engineering. Besides the obvious shortage of pre-training data, post-training itself is a bottleneck: every new language seems to require new datasets, test harnesses, and reinforcement-learning (RL) infrastructure. We introduce Agnostics, a language-agnostic post-training pipeline that eliminates this per-language engineering. The key idea is to judge code solely by its externally observable behavior, so a single verifier can test solutions written in any language. Concretely, we (i) use an LLM to rewrite existing unit-test datasets into an I/O format, (ii) supply a short configuration that tells the verifier how to compile and run a target language, and (iii) apply reinforcement learning with verifiable rewards (RLVR) in a robust code execution environment. Applied to five low-resource languages--Lua, Julia, R, OCaml, and Fortran--Agnostics (1) improves Qwen-3 4B to performance that rivals other 16B-70B open-weight models; (2) scales cleanly to larger and diverse model families (Qwen-3 8B, DeepSeek Coder 6.7B Instruct, Phi 4 Mini); and (3) for {le} 16B parameter models, sets new state-of-the-art pass@1 results on MultiPL-E and a new multi-language version LiveCodeBench that we introduce. We will release the language-agnostic training datasets (Ag-MBPP-X, Ag-Codeforces-X, Ag-LiveCodeBench-X), training code, and ready-to-use configurations, making RL post-training in any programming language as simple as editing a short YAML file.
An Emulator for Fine-Tuning Large Language Models using Small Language Models
Widely used language models (LMs) are typically built by scaling up a two-stage training pipeline: a pre-training stage that uses a very large, diverse dataset of text and a fine-tuning (sometimes, 'alignment') stage that uses targeted examples or other specifications of desired behaviors. While it has been hypothesized that knowledge and skills come from pre-training, and fine-tuning mostly filters this knowledge and skillset, this intuition has not been extensively tested. To aid in doing so, we introduce a novel technique for decoupling the knowledge and skills gained in these two stages, enabling a direct answer to the question, "What would happen if we combined the knowledge learned by a large model during pre-training with the knowledge learned by a small model during fine-tuning (or vice versa)?" Using an RL-based framework derived from recent developments in learning from human preferences, we introduce emulated fine-tuning (EFT), a principled and practical method for sampling from a distribution that approximates (or 'emulates') the result of pre-training and fine-tuning at different scales. Our experiments with EFT show that scaling up fine-tuning tends to improve helpfulness, while scaling up pre-training tends to improve factuality. Beyond decoupling scale, we show that EFT enables test-time adjustment of competing behavioral traits like helpfulness and harmlessness without additional training. Finally, a special case of emulated fine-tuning, which we call LM up-scaling, avoids resource-intensive fine-tuning of large pre-trained models by ensembling them with small fine-tuned models, essentially emulating the result of fine-tuning the large pre-trained model. Up-scaling consistently improves helpfulness and factuality of instruction-following models in the Llama, Llama-2, and Falcon families, without additional hyperparameters or training.
Beat-Aligned Spectrogram-to-Sequence Generation of Rhythm-Game Charts
In the heart of "rhythm games" - games where players must perform actions in sync with a piece of music - are "charts", the directives to be given to players. We newly formulate chart generation as a sequence generation task and train a Transformer using a large dataset. We also introduce tempo-informed preprocessing and training procedures, some of which are suggested to be integral for a successful training. Our model is found to outperform the baselines on a large dataset, and is also found to benefit from pretraining and finetuning.
A Survey on Programmatic Weak Supervision
Labeling training data has become one of the major roadblocks to using machine learning. Among various weak supervision paradigms, programmatic weak supervision (PWS) has achieved remarkable success in easing the manual labeling bottleneck by programmatically synthesizing training labels from multiple potentially noisy supervision sources. This paper presents a comprehensive survey of recent advances in PWS. In particular, we give a brief introduction of the PWS learning paradigm, and review representative approaches for each component within PWS's learning workflow. In addition, we discuss complementary learning paradigms for tackling limited labeled data scenarios and how these related approaches can be used in conjunction with PWS. Finally, we identify several critical challenges that remain under-explored in the area to hopefully inspire future research directions in the field.
Interactive Training: Feedback-Driven Neural Network Optimization
Traditional neural network training typically follows fixed, predefined optimization recipes, lacking the flexibility to dynamically respond to instabilities or emerging training issues. In this paper, we introduce Interactive Training, an open-source framework that enables real-time, feedback-driven intervention during neural network training by human experts or automated AI agents. At its core, Interactive Training uses a control server to mediate communication between users or agents and the ongoing training process, allowing users to dynamically adjust optimizer hyperparameters, training data, and model checkpoints. Through three case studies, we demonstrate that Interactive Training achieves superior training stability, reduced sensitivity to initial hyperparameters, and improved adaptability to evolving user needs, paving the way toward a future training paradigm where AI agents autonomously monitor training logs, proactively resolve instabilities, and optimize training dynamics.
Pre-trained Language Model based Ranking in Baidu Search
As the heart of a search engine, the ranking system plays a crucial role in satisfying users' information demands. More recently, neural rankers fine-tuned from pre-trained language models (PLMs) establish state-of-the-art ranking effectiveness. However, it is nontrivial to directly apply these PLM-based rankers to the large-scale web search system due to the following challenging issues:(1) the prohibitively expensive computations of massive neural PLMs, especially for long texts in the web-document, prohibit their deployments in an online ranking system that demands extremely low latency;(2) the discrepancy between existing ranking-agnostic pre-training objectives and the ad-hoc retrieval scenarios that demand comprehensive relevance modeling is another main barrier for improving the online ranking system;(3) a real-world search engine typically involves a committee of ranking components, and thus the compatibility of the individually fine-tuned ranking model is critical for a cooperative ranking system. In this work, we contribute a series of successfully applied techniques in tackling these exposed issues when deploying the state-of-the-art Chinese pre-trained language model, i.e., ERNIE, in the online search engine system. We first articulate a novel practice to cost-efficiently summarize the web document and contextualize the resultant summary content with the query using a cheap yet powerful Pyramid-ERNIE architecture. Then we endow an innovative paradigm to finely exploit the large-scale noisy and biased post-click behavioral data for relevance-oriented pre-training. We also propose a human-anchored fine-tuning strategy tailored for the online ranking system, aiming to stabilize the ranking signals across various online components. Extensive offline and online experimental results show that the proposed techniques significantly boost the search engine's performance.
Jointly Reinforcing Diversity and Quality in Language Model Generations
Post-training of Large Language Models (LMs) often prioritizes accuracy and helpfulness at the expense of diversity. This creates a tension: while post-training improves response quality, it also sharpens output distributions and reduces the range of ideas, limiting the usefulness of LMs in creative and exploratory tasks such as brainstorming, storytelling, or problem solving. We address this challenge with Diversity-Aware Reinforcement Learning (DARLING), a framework that jointly optimizes for response quality and semantic diversity. At its core, DARLING introduces a learned partition function to measure diversity beyond surface-level lexical variations. This diversity signal is then combined with a quality reward during online reinforcement learning, encouraging models to generate outputs that are both high-quality and distinct. Experiments across multiple model families and sizes show that DARLING generalizes to two regimes: non-verifiable tasks (instruction following and creative writing) and verifiable tasks (competition math). On five benchmarks in the first setting, DARLING consistently outperforms quality-only RL baselines, producing outputs that are simultaneously of higher quality and novelty. In the second setting, DARLING achieves higher pass@1 (solution quality) and pass@k (solution variety). Most strikingly, explicitly optimizing for diversity catalyzes exploration in online RL, which manifests itself as higher-quality responses.
PISA Experiments: Exploring Physics Post-Training for Video Diffusion Models by Watching Stuff Drop
Large-scale pre-trained video generation models excel in content creation but are not reliable as physically accurate world simulators out of the box. This work studies the process of post-training these models for accurate world modeling through the lens of the simple, yet fundamental, physics task of modeling object freefall. We show state-of-the-art video generation models struggle with this basic task, despite their visually impressive outputs. To remedy this problem, we find that fine-tuning on a relatively small amount of simulated videos is effective in inducing the dropping behavior in the model, and we can further improve results through a novel reward modeling procedure we introduce. Our study also reveals key limitations of post-training in generalization and distribution modeling. Additionally, we release a benchmark for this task that may serve as a useful diagnostic tool for tracking physical accuracy in large-scale video generative model development.
Knowledge-informed Molecular Learning: A Survey on Paradigm Transfer
Machine learning, notably deep learning, has significantly propelled molecular investigations within the biochemical sphere. Traditionally, modeling for such research has centered around a handful of paradigms. For instance, the prediction paradigm is frequently deployed for tasks such as molecular property prediction. To enhance the generation and decipherability of purely data-driven models, scholars have integrated biochemical domain knowledge into these molecular study models. This integration has sparked a surge in paradigm transfer, which is solving one molecular learning task by reformulating it as another one. With the emergence of Large Language Models, these paradigms have demonstrated an escalating trend towards harmonized unification. In this work, we delineate a literature survey focused on knowledge-informed molecular learning from the perspective of paradigm transfer. We classify the paradigms, scrutinize their methodologies, and dissect the contribution of domain knowledge. Moreover, we encapsulate prevailing trends and identify intriguing avenues for future exploration in molecular learning.
Self-Supervised Policy Adaptation during Deployment
In most real world scenarios, a policy trained by reinforcement learning in one environment needs to be deployed in another, potentially quite different environment. However, generalization across different environments is known to be hard. A natural solution would be to keep training after deployment in the new environment, but this cannot be done if the new environment offers no reward signal. Our work explores the use of self-supervision to allow the policy to continue training after deployment without using any rewards. While previous methods explicitly anticipate changes in the new environment, we assume no prior knowledge of those changes yet still obtain significant improvements. Empirical evaluations are performed on diverse simulation environments from DeepMind Control suite and ViZDoom, as well as real robotic manipulation tasks in continuously changing environments, taking observations from an uncalibrated camera. Our method improves generalization in 31 out of 36 environments across various tasks and outperforms domain randomization on a majority of environments.
Collapse of Self-trained Language Models
In various fields of knowledge creation, including science, new ideas often build on pre-existing information. In this work, we explore this concept within the context of language models. Specifically, we explore the potential of self-training models on their own outputs, akin to how humans learn and build on their previous thoughts and actions. While this approach is intuitively appealing, our research reveals its practical limitations. We find that extended self-training of the GPT-2 model leads to a significant degradation in performance, resulting in repetitive and collapsed token output.
Collaborative Development of NLP models
Despite substantial advancements, Natural Language Processing (NLP) models often require post-training adjustments to enforce business rules, rectify undesired behavior, and align with user values. These adjustments involve operationalizing "concepts"--dictating desired model responses to certain inputs. However, it's difficult for a single entity to enumerate and define all possible concepts, indicating a need for a multi-user, collaborative model alignment framework. Moreover, the exhaustive delineation of a concept is challenging, and an improper approach can create shortcuts or interfere with original data or other concepts. To address these challenges, we introduce CoDev, a framework that enables multi-user interaction with the model, thereby mitigating individual limitations. CoDev aids users in operationalizing their concepts using Large Language Models, and relying on the principle that NLP models exhibit simpler behaviors in local regions. Our main insight is learning a local model for each concept, and a global model to integrate the original data with all concepts. We then steer a large language model to generate instances within concept boundaries where local and global disagree. Our experiments show CoDev is effective at helping multiple users operationalize concepts and avoid interference for a variety of scenarios, tasks, and models.
Calibrated Language Models Must Hallucinate
Recent language models have a mysterious tendency to generate false but plausible-sounding text. Such "hallucinations" are an obstacle to the usability of language-based AI systems and can harm people who rely upon their outputs. This work shows shows that there is an inherent statistical reason that pretrained language models hallucinate certain types of facts, having nothing to do with the transformer LM architecture or data quality. For "arbitrary" facts whose veracity cannot be determined from the training data, we show that hallucination is necessary for language models that satisfy a statistical calibration condition appropriate for generative language models. Specifically, if the maximum probability of any fact is bounded, we show that the probability of generating a hallucination is close to the fraction of facts that occur exactly once in the training data (a "Good-Turing" estimate), even assuming ideal training data without errors. One conclusion is that models pretrained to be sufficiently good predictors (i.e., calibrated) may require post-training to mitigate hallucinations on the type of arbitrary facts that tend to appear once in the training set. However, our analysis also suggests that there is no statistical reason that pretraining will lead to hallucination on facts that tend to appear more than once in the training data (like references to publications such as articles and books, whose hallucinations have been particularly notable and problematic) or on systematic facts (like arithmetic calculations). Therefore, different architectures and learning algorithms may mitigate these latter types of hallucinations.
Modifying Large Language Model Post-Training for Diverse Creative Writing
As creative writing tasks do not have singular correct answers, large language models (LLMs) trained to perform these tasks should be able to generate diverse valid outputs. However, LLM post-training often focuses on improving generation quality but neglects to facilitate output diversity. Hence, in creative writing generation, we investigate post-training approaches to promote both output diversity and quality. Our core idea is to include deviation -- the degree of difference between a training sample and all other samples with the same prompt -- in the training objective to facilitate learning from rare high-quality instances. By adopting our approach to direct preference optimization (DPO) and odds ratio preference optimization (ORPO), we demonstrate that we can promote the output diversity of trained models while minimally decreasing quality. Our best model with 8B parameters could achieve on-par diversity as a human-created dataset while having output quality similar to the best instruction-tuned models we examined, GPT-4o and DeepSeek-R1. We further validate our approaches with a human evaluation, an ablation, and a comparison to an existing diversification approach, DivPO.
Fast Machine Unlearning Without Retraining Through Selective Synaptic Dampening
Machine unlearning, the ability for a machine learning model to forget, is becoming increasingly important to comply with data privacy regulations, as well as to remove harmful, manipulated, or outdated information. The key challenge lies in forgetting specific information while protecting model performance on the remaining data. While current state-of-the-art methods perform well, they typically require some level of retraining over the retained data, in order to protect or restore model performance. This adds computational overhead and mandates that the training data remain available and accessible, which may not be feasible. In contrast, other methods employ a retrain-free paradigm, however, these approaches are prohibitively computationally expensive and do not perform on par with their retrain-based counterparts. We present Selective Synaptic Dampening (SSD), a novel two-step, post hoc, retrain-free approach to machine unlearning which is fast, performant, and does not require long-term storage of the training data. First, SSD uses the Fisher information matrix of the training and forgetting data to select parameters that are disproportionately important to the forget set. Second, SSD induces forgetting by dampening these parameters proportional to their relative importance to the forget set with respect to the wider training data. We evaluate our method against several existing unlearning methods in a range of experiments using ResNet18 and Vision Transformer. Results show that the performance of SSD is competitive with retrain-based post hoc methods, demonstrating the viability of retrain-free post hoc unlearning approaches.
Learning Dynamics of LLM Finetuning
Learning dynamics, which describes how the learning of specific training examples influences the model's predictions on other examples, gives us a powerful tool for understanding the behavior of deep learning systems. We study the learning dynamics of large language models during different types of finetuning, by analyzing the step-wise decomposition of how influence accumulates among different potential responses. Our framework allows a uniform interpretation of many interesting observations about the training of popular algorithms for both instruction tuning and preference tuning. In particular, we propose a hypothetical explanation of why specific types of hallucination are strengthened after finetuning, e.g., the model might use phrases or facts in the response for question B to answer question A, or the model might keep repeating similar simple phrases when generating responses. We also extend our framework and highlight a unique "squeezing effect" to explain a previously observed phenomenon in off-policy direct preference optimization (DPO), where running DPO for too long makes even the desired outputs less likely. This framework also provides insights into where the benefits of on-policy DPO and other variants come from. The analysis not only provides a novel perspective of understanding LLM's finetuning but also inspires a simple, effective method to improve alignment performance.
Subspace Chronicles: How Linguistic Information Emerges, Shifts and Interacts during Language Model Training
Representational spaces learned via language modeling are fundamental to Natural Language Processing (NLP), however there has been limited understanding regarding how and when during training various types of linguistic information emerge and interact. Leveraging a novel information theoretic probing suite, which enables direct comparisons of not just task performance, but their representational subspaces, we analyze nine tasks covering syntax, semantics and reasoning, across 2M pre-training steps and five seeds. We identify critical learning phases across tasks and time, during which subspaces emerge, share information, and later disentangle to specialize. Across these phases, syntactic knowledge is acquired rapidly after 0.5% of full training. Continued performance improvements primarily stem from the acquisition of open-domain knowledge, while semantics and reasoning tasks benefit from later boosts to long-range contextualization and higher specialization. Measuring cross-task similarity further reveals that linguistically related tasks share information throughout training, and do so more during the critical phase of learning than before or after. Our findings have implications for model interpretability, multi-task learning, and learning from limited data.
Alignment is not sufficient to prevent large language models from generating harmful information: A psychoanalytic perspective
Large Language Models (LLMs) are central to a multitude of applications but struggle with significant risks, notably in generating harmful content and biases. Drawing an analogy to the human psyche's conflict between evolutionary survival instincts and societal norm adherence elucidated in Freud's psychoanalysis theory, we argue that LLMs suffer a similar fundamental conflict, arising between their inherent desire for syntactic and semantic continuity, established during the pre-training phase, and the post-training alignment with human values. This conflict renders LLMs vulnerable to adversarial attacks, wherein intensifying the models' desire for continuity can circumvent alignment efforts, resulting in the generation of harmful information. Through a series of experiments, we first validated the existence of the desire for continuity in LLMs, and further devised a straightforward yet powerful technique, such as incomplete sentences, negative priming, and cognitive dissonance scenarios, to demonstrate that even advanced LLMs struggle to prevent the generation of harmful information. In summary, our study uncovers the root of LLMs' vulnerabilities to adversarial attacks, hereby questioning the efficacy of solely relying on sophisticated alignment methods, and further advocates for a new training idea that integrates modal concepts alongside traditional amodal concepts, aiming to endow LLMs with a more nuanced understanding of real-world contexts and ethical considerations.
Rethinking the adaptive relationship between Encoder Layers and Decoder Layers
This article explores the adaptive relationship between Encoder Layers and Decoder Layers using the SOTA model Helsinki-NLP/opus-mt-de-en, which translates German to English. The specific method involves introducing a bias-free fully connected layer between the Encoder and Decoder, with different initializations of the layer's weights, and observing the outcomes of fine-tuning versus retraining. Four experiments were conducted in total. The results suggest that directly modifying the pre-trained model structure for fine-tuning yields suboptimal performance. However, upon observing the outcomes of the experiments with retraining, this structural adjustment shows significant potential.
Revealing the Power of Post-Training for Small Language Models via Knowledge Distillation
The rapid advancement of large language models (LLMs) has significantly advanced the capabilities of artificial intelligence across various domains. However, their massive scale and high computational costs render them unsuitable for direct deployment in resource-constrained edge environments. This creates a critical need for high-performance small models that can operate efficiently at the edge. Yet, after pre-training alone, these smaller models often fail to meet the performance requirements of complex tasks. To bridge this gap, we introduce a systematic post-training pipeline that efficiently enhances small model accuracy. Our post training pipeline consists of curriculum-based supervised fine-tuning (SFT) and offline on-policy knowledge distillation. The resulting instruction-tuned model achieves state-of-the-art performance among billion-parameter models, demonstrating strong generalization under strict hardware constraints while maintaining competitive accuracy across a variety of tasks. This work provides a practical and efficient solution for developing high-performance language models on Ascend edge devices.
Hallucinations or Attention Misdirection? The Path to Strategic Value Extraction in Business Using Large Language Models
Large Language Models with transformer architecture have revolutionized the domain of text generation, setting unprecedented benchmarks. Despite their impressive capabilities, LLMs have been criticized for generating outcomes that deviate from factual accuracy or display logical inconsistencies, phenomena commonly referred to as hallucinations. This term, however, has often been misapplied to any results deviating from the instructor's expectations, which this paper defines as attention misdirection rather than true hallucinations. Understanding the distinction between hallucinations and attention misdirection becomes increasingly relevant in business contexts, where the ramifications of such errors can significantly impact the value extraction from these inherently pre-trained models. This paper highlights the best practices of the PGI, Persona, Grouping, and Intelligence, method, a strategic framework that achieved a remarkable error rate of only 3,15 percent across 4,000 responses generated by GPT in response to a real business challenge. It emphasizes that by equipping experimentation with knowledge, businesses can unlock opportunities for innovation through the use of these natively pre-trained models. This reinforces the notion that strategic application grounded in a skilled team can maximize the benefits of emergent technologies such as the LLMs.
Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing
This paper surveys and organizes research works in a new paradigm in natural language processing, which we dub "prompt-based learning". Unlike traditional supervised learning, which trains a model to take in an input x and predict an output y as P(y|x), prompt-based learning is based on language models that model the probability of text directly. To use these models to perform prediction tasks, the original input x is modified using a template into a textual string prompt x' that has some unfilled slots, and then the language model is used to probabilistically fill the unfilled information to obtain a final string x, from which the final output y can be derived. This framework is powerful and attractive for a number of reasons: it allows the language model to be pre-trained on massive amounts of raw text, and by defining a new prompting function the model is able to perform few-shot or even zero-shot learning, adapting to new scenarios with few or no labeled data. In this paper we introduce the basics of this promising paradigm, describe a unified set of mathematical notations that can cover a wide variety of existing work, and organize existing work along several dimensions, e.g.the choice of pre-trained models, prompts, and tuning strategies. To make the field more accessible to interested beginners, we not only make a systematic review of existing works and a highly structured typology of prompt-based concepts, but also release other resources, e.g., a website http://pretrain.nlpedia.ai/ including constantly-updated survey, and paperlist.
An Empirical Analysis of Forgetting in Pre-trained Models with Incremental Low-Rank Updates
Broad, open source availability of large pretrained foundation models on the internet through platforms such as HuggingFace has taken the world of practical deep learning by storm. A classical pipeline for neural network training now typically consists of finetuning these pretrained network on a small target dataset instead of training from scratch. In the case of large models this can be done even on modest hardware using a low rank training technique known as Low-Rank Adaptation (LoRA). While Low Rank training has already been studied in the continual learning setting, existing works often consider storing the learned adapter along with the existing model but rarely attempt to modify the weights of the pretrained model by merging the LoRA with the existing weights after finishing the training of each task. In this article we investigate this setting and study the impact of LoRA rank on the forgetting of the pretraining foundation task and on the plasticity and forgetting of subsequent ones. We observe that this rank has an important impact on forgetting of both the pretraining and downstream tasks. We also observe that vision transformers finetuned in that way exhibit a sort of ``contextual'' forgetting, a behaviour that we do not observe for residual networks and that we believe has not been observed yet in previous continual learning works.
Treasure Hunt: Real-time Targeting of the Long Tail using Training-Time Markers
One of the most profound challenges of modern machine learning is performing well on the long-tail of rare and underrepresented features. Large general-purpose models are trained for many tasks, but work best on high-frequency use cases. After training, it is hard to adapt a model to perform well on specific use cases underrepresented in the training corpus. Relying on prompt engineering or few-shot examples to maximize the output quality on a particular test case can be frustrating, as models can be highly sensitive to small changes, react in unpredicted ways or rely on a fixed system prompt for maintaining performance. In this work, we ask: "Can we optimize our training protocols to both improve controllability and performance on underrepresented use cases at inference time?" We revisit the divide between training and inference techniques to improve long-tail performance while providing users with a set of control levers the model is trained to be responsive to. We create a detailed taxonomy of data characteristics and task provenance to explicitly control generation attributes and implicitly condition generations at inference time. We fine-tune a base model to infer these markers automatically, which makes them optional at inference time. This principled and flexible approach yields pronounced improvements in performance, especially on examples from the long tail of the training distribution. While we observe an average lift of 5.7% win rates in open-ended generation quality with our markers, we see over 9.1% gains in underrepresented domains. We also observe relative lifts of up to 14.1% on underrepresented tasks like CodeRepair and absolute improvements of 35.3% on length instruction following evaluations.
Consecutive Batch Model Editing with HooK Layers
As the typical retraining paradigm is unacceptably time- and resource-consuming, researchers are turning to model editing to find an effective way that supports both consecutive and batch scenarios to edit the model behavior directly. Despite all these practical expectations, existing model editing methods fail to realize all of them. Furthermore, the memory demands for such sequential model editing approaches tend to be prohibitive, frequently necessitating an external memory that grows incrementally over time. To cope with these challenges, we propose CoachHooK, a model editing method that simultaneously supports sequential and batch editing. CoachHooK is memory-friendly as it only needs a small amount of it to store several hook layers whose size remains unchanged over time. Experimental results demonstrate the superiority of our method over other batch-supportive model editing methods under both single-round and consecutive batch editing scenarios. Extensive analyses of CoachHooK have been conducted to verify the stability of our method over a number of consecutive steps.
Bootstrap Your Own Skills: Learning to Solve New Tasks with Large Language Model Guidance
We propose BOSS, an approach that automatically learns to solve new long-horizon, complex, and meaningful tasks by growing a learned skill library with minimal supervision. Prior work in reinforcement learning require expert supervision, in the form of demonstrations or rich reward functions, to learn long-horizon tasks. Instead, our approach BOSS (BOotStrapping your own Skills) learns to accomplish new tasks by performing "skill bootstrapping," where an agent with a set of primitive skills interacts with the environment to practice new skills without receiving reward feedback for tasks outside of the initial skill set. This bootstrapping phase is guided by large language models (LLMs) that inform the agent of meaningful skills to chain together. Through this process, BOSS builds a wide range of complex and useful behaviors from a basic set of primitive skills. We demonstrate through experiments in realistic household environments that agents trained with our LLM-guided bootstrapping procedure outperform those trained with naive bootstrapping as well as prior unsupervised skill acquisition methods on zero-shot execution of unseen, long-horizon tasks in new environments. Website at clvrai.com/boss.
CodeBoost: Boosting Code LLMs by Squeezing Knowledge from Code Snippets with RL
Code large language models (LLMs) have become indispensable tools for building efficient and automated coding pipelines. Existing models are typically post-trained using reinforcement learning (RL) from general-purpose LLMs using "human instruction-final answer" pairs, where the instructions are usually from manual annotations. However, collecting high-quality coding instructions is both labor-intensive and difficult to scale. On the other hand, code snippets are abundantly available from various sources. This imbalance presents a major bottleneck in instruction-based post-training. We propose CodeBoost, a post-training framework that enhances code LLMs purely from code snippets, without relying on human-annotated instructions. CodeBoost introduces the following key components: (1) maximum-clique curation, which selects a representative and diverse training corpus from code; (2) bi-directional prediction, which enables the model to learn from both forward and backward prediction objectives; (3) error-aware prediction, which incorporates learning signals from both correct and incorrect outputs; (4) heterogeneous augmentation, which diversifies the training distribution to enrich code semantics; and (5) heterogeneous rewarding, which guides model learning through multiple reward types including format correctness and execution feedback from both successes and failures. Extensive experiments across several code LLMs and benchmarks verify that CodeBoost consistently improves performance, demonstrating its effectiveness as a scalable and effective training pipeline.
The Climb Carves Wisdom Deeper Than the Summit: On the Noisy Rewards in Learning to Reason
Recent studies on post-training large language models (LLMs) for reasoning through reinforcement learning (RL) typically focus on tasks that can be accurately verified and rewarded, such as solving math problems. In contrast, our research investigates the impact of reward noise, a more practical consideration for real-world scenarios involving the post-training of LLMs using reward models. We found that LLMs demonstrate strong robustness to substantial reward noise. For example, manually flipping 40% of the reward function's outputs in math tasks still allows a Qwen-2.5-7B model to achieve rapid convergence, improving its performance on math tasks from 5% to 72%, compared to the 75% accuracy achieved by a model trained with noiseless rewards. Surprisingly, by only rewarding the appearance of key reasoning phrases (namely reasoning pattern reward, RPR), such as ``first, I need to''-without verifying the correctness of answers, the model achieved peak downstream performance (over 70% accuracy for Qwen-2.5-7B) comparable to models trained with strict correctness verification and accurate rewards. Recognizing the importance of the reasoning process over the final results, we combined RPR with noisy reward models. RPR helped calibrate the noisy reward models, mitigating potential false negatives and enhancing the LLM's performance on open-ended tasks. These findings suggest the importance of improving models' foundational abilities during the pre-training phase while providing insights for advancing post-training techniques. Our code and scripts are available at https://github.com/trestad/Noisy-Rewards-in-Learning-to-Reason.
The Fine Line: Navigating Large Language Model Pretraining with Down-streaming Capability Analysis
Uncovering early-stage metrics that reflect final model performance is one core principle for large-scale pretraining. The existing scaling law demonstrates the power-law correlation between pretraining loss and training flops, which serves as an important indicator of the current training state for large language models. However, this principle only focuses on the model's compression properties on the training data, resulting in an inconsistency with the ability improvements on the downstream tasks. Some follow-up works attempted to extend the scaling-law to more complex metrics (such as hyperparameters), but still lacked a comprehensive analysis of the dynamic differences among various capabilities during pretraining. To address the aforementioned limitations, this paper undertakes a comprehensive comparison of model capabilities at various pretraining intermediate checkpoints. Through this analysis, we confirm that specific downstream metrics exhibit similar training dynamics across models of different sizes, up to 67 billion parameters. In addition to our core findings, we've reproduced Amber and OpenLLaMA, releasing their intermediate checkpoints. This initiative offers valuable resources to the research community and facilitates the verification and exploration of LLM pretraining by open-source researchers. Besides, we provide empirical summaries, including performance comparisons of different models and capabilities, and tuition of key metrics for different training phases. Based on these findings, we provide a more user-friendly strategy for evaluating the optimization state, offering guidance for establishing a stable pretraining process.
BERTs are Generative In-Context Learners
This paper explores the in-context learning capabilities of masked language models, challenging the common view that this ability does not 'emerge' in them. We present an embarrassingly simple inference technique that enables DeBERTa to operate as a generative model without any additional training. Our findings demonstrate that DeBERTa can match and even surpass GPT-3, its contemporary that famously introduced the paradigm of in-context learning. The comparative analysis reveals that the masked and causal language models behave very differently, as they clearly outperform each other on different categories of tasks. This suggests that there is great potential for a hybrid training approach that takes advantage of the strengths of both training objectives.
A Post-Training Enhanced Optimization Approach for Small Language Models
This paper delves into the continuous post-training optimization methods for small language models, and proposes a continuous post-training alignment data construction method for small language models. The core of this method is based on the data guidance of large models, optimizing the diversity and accuracy of alignment data. In addition, to verify the effectiveness of the methods in this paper, we used Qwen2-0.5B-Instruct model as the baseline model for small language models, using the alignment dataset constructed by our proposed method, we trained and compared several groups of experiments, including SFT (Supervised Fine Tuning) post-training experiment and KTO (Kahneman Tversky optimization) post-training experiment, as well as SFT-KTO two-stage post-training experiment and model weight fusion experiment. Finally, we evaluated and analyzed the performance of post-training models, and confirmed that the continuous post-training optimization method proposed by us can significantly improve the performance of small language models.
Navigating the Alignment-Calibration Trade-off: A Pareto-Superior Frontier via Model Merging
The "alignment tax" of post-training is typically framed as a drop in task accuracy. We show it also involves a severe loss of calibration, making models overconfident, less reliable, and model outputs less diverse. We show that this trade-off can be navigated effectively via a simple post-hoc intervention: interpolating between a model's weights before and after alignment. Crucially, this is not a strict trade-off. We find that the process consistently reveals Pareto-optimal interpolations - models that improve accuracy beyond both parents while substantially recovering the calibration lost during alignment. Our work demonstrates that simple model merging provides a computationally efficient method for mitigating the full scope of the alignment tax, yielding models that are more capable and more reliable.
Self-Rewarding Language Models
We posit that to achieve superhuman agents, future models require superhuman feedback in order to provide an adequate training signal. Current approaches commonly train reward models from human preferences, which may then be bottlenecked by human performance level, and secondly these separate frozen reward models cannot then learn to improve during LLM training. In this work, we study Self-Rewarding Language Models, where the language model itself is used via LLM-as-a-Judge prompting to provide its own rewards during training. We show that during Iterative DPO training that not only does instruction following ability improve, but also the ability to provide high-quality rewards to itself. Fine-tuning Llama 2 70B on three iterations of our approach yields a model that outperforms many existing systems on the AlpacaEval 2.0 leaderboard, including Claude 2, Gemini Pro, and GPT-4 0613. While only a preliminary study, this work opens the door to the possibility of models that can continually improve in both axes.
Modeling of learning curves with applications to pos tagging
An algorithm to estimate the evolution of learning curves on the whole of a training data base, based on the results obtained from a portion and using a functional strategy, is introduced. We approximate iteratively the sought value at the desired time, independently of the learning technique used and once a point in the process, called prediction level, has been passed. The proposal proves to be formally correct with respect to our working hypotheses and includes a reliable proximity condition. This allows the user to fix a convergence threshold with respect to the accuracy finally achievable, which extends the concept of stopping criterion and seems to be effective even in the presence of distorting observations. Our aim is to evaluate the training effort, supporting decision making in order to reduce the need for both human and computational resources during the learning process. The proposal is of interest in at least three operational procedures. The first is the anticipation of accuracy gain, with the purpose of measuring how much work is needed to achieve a certain degree of performance. The second relates the comparison of efficiency between systems at training time, with the objective of completing this task only for the one that best suits our requirements. The prediction of accuracy is also a valuable item of information for customizing systems, since we can estimate in advance the impact of settings on both the performance and the development costs. Using the generation of part-of-speech taggers as an example application, the experimental results are consistent with our expectations.
Looking beyond the next token
The structure of causal language model training assumes that each token can be accurately predicted from the previous context. This contrasts with humans' natural writing and reasoning process, where goals are typically known before the exact argument or phrasings. While this mismatch has been well studied in the literature, the working assumption has been that architectural changes are needed to address this mismatch. We argue that rearranging and processing the training data sequences can allow models to more accurately imitate the true data-generating process, and does not require any other changes to the architecture or training infrastructure. We demonstrate that this technique, Trelawney, and the inference algorithms derived from it allow us to improve performance on several key benchmarks that span planning, algorithmic reasoning, and story generation tasks. Finally, our method naturally enables the generation of long-term goals at no additional cost. We investigate how using the model's goal-generation capability can further improve planning and reasoning. Additionally, we believe Trelawney could potentially open doors to new capabilities beyond the current language modeling paradigm.
Attribute-to-Delete: Machine Unlearning via Datamodel Matching
Machine unlearning -- efficiently removing the effect of a small "forget set" of training data on a pre-trained machine learning model -- has recently attracted significant research interest. Despite this interest, however, recent work shows that existing machine unlearning techniques do not hold up to thorough evaluation in non-convex settings. In this work, we introduce a new machine unlearning technique that exhibits strong empirical performance even in such challenging settings. Our starting point is the perspective that the goal of unlearning is to produce a model whose outputs are statistically indistinguishable from those of a model re-trained on all but the forget set. This perspective naturally suggests a reduction from the unlearning problem to that of data attribution, where the goal is to predict the effect of changing the training set on a model's outputs. Thus motivated, we propose the following meta-algorithm, which we call Datamodel Matching (DMM): given a trained model, we (a) use data attribution to predict the output of the model if it were re-trained on all but the forget set points; then (b) fine-tune the pre-trained model to match these predicted outputs. In a simple convex setting, we show how this approach provably outperforms a variety of iterative unlearning algorithms. Empirically, we use a combination of existing evaluations and a new metric based on the KL-divergence to show that even in non-convex settings, DMM achieves strong unlearning performance relative to existing algorithms. An added benefit of DMM is that it is a meta-algorithm, in the sense that future advances in data attribution translate directly into better unlearning algorithms, pointing to a clear direction for future progress in unlearning.
Learning Dynamics in Continual Pre-Training for Large Language Models
Continual Pre-Training (CPT) has become a popular and effective method to apply strong foundation models to specific downstream tasks. In this work, we explore the learning dynamics throughout the CPT process for large language models. We specifically focus on how general and downstream domain performance evolves at each training step, with domain performance measured via validation losses. We have observed that the CPT loss curve fundamentally characterizes the transition from one curve to another hidden curve, and could be described by decoupling the effects of distribution shift and learning rate annealing. We derive a CPT scaling law that combines the two factors, enabling the prediction of loss at any (continual) training steps and across learning rate schedules (LRS) in CPT. Our formulation presents a comprehensive understanding of several critical factors in CPT, including loss potential, peak learning rate, training steps, replay ratio, etc. Moreover, our approach can be adapted to customize training hyper-parameters to different CPT goals such as balancing general and domain-specific performance. Extensive experiments demonstrate that our scaling law holds across various CPT datasets and training hyper-parameters.
Efficient NLP Model Finetuning via Multistage Data Filtering
As model finetuning is central to the modern NLP, we set to maximize its efficiency. Motivated by redundancy in training examples and the sheer sizes of pretrained models, we exploit a key opportunity: training only on important data. To this end, we set to filter training examples in a streaming fashion, in tandem with training the target model. Our key techniques are two: (1) automatically determine a training loss threshold for skipping backward training passes; (2) run a meta predictor for further skipping forward training passes. We integrate the above techniques in a holistic, three-stage training process. On a diverse set of benchmarks, our method reduces the required training examples by up to 5.3times and training time by up to 6.8times, while only seeing minor accuracy degradation. Our method is effective even when training one epoch, where each training example is encountered only once. It is simple to implement and is compatible with the existing finetuning techniques. Code is available at: https://github.com/xo28/efficient- NLP-multistage-training
Improving In-Context Few-Shot Learning via Self-Supervised Training
Self-supervised pretraining has made few-shot learning possible for many NLP tasks. But the pretraining objectives are not typically adapted specifically for in-context few-shot learning. In this paper, we propose to use self-supervision in an intermediate training stage between pretraining and downstream few-shot usage with the goal to teach the model to perform in-context few shot learning. We propose and evaluate four self-supervised objectives on two benchmarks. We find that the intermediate self-supervision stage produces models that outperform strong baselines. Ablation study shows that several factors affect the downstream performance, such as the amount of training data and the diversity of the self-supervised objectives. Human-annotated cross-task supervision and self-supervision are complementary. Qualitative analysis suggests that the self-supervised-trained models are better at following task requirements.
Reward Reports for Reinforcement Learning
Building systems that are good for society in the face of complex societal effects requires a dynamic approach. Recent approaches to machine learning (ML) documentation have demonstrated the promise of discursive frameworks for deliberation about these complexities. However, these developments have been grounded in a static ML paradigm, leaving the role of feedback and post-deployment performance unexamined. Meanwhile, recent work in reinforcement learning has shown that the effects of feedback and optimization objectives on system behavior can be wide-ranging and unpredictable. In this paper we sketch a framework for documenting deployed and iteratively updated learning systems, which we call Reward Reports. Taking inspiration from various contributions to the technical literature on reinforcement learning, we outline Reward Reports as living documents that track updates to design choices and assumptions behind what a particular automated system is optimizing for. They are intended to track dynamic phenomena arising from system deployment, rather than merely static properties of models or data. After presenting the elements of a Reward Report, we discuss a concrete example: Meta's BlenderBot 3 chatbot. Several others for game-playing (DeepMind's MuZero), content recommendation (MovieLens), and traffic control (Project Flow) are included in the appendix.
Online SFT for LLM Reasoning: Surprising Effectiveness of Self-Tuning without Rewards
We present a simple, self-help online supervised finetuning (OSFT) paradigm for LLM reasoning. In this paradigm, the model generates its own responses and is immediately finetuned on this self-generated data. OSFT is a highly efficient training strategy for LLM reasoning, as it is reward-free and uses just one rollout by default. Experiment results show that OSFT achieves downstream performance on challenging mathematical reasoning tasks comparable to strong reinforcement learning with verifiable rewards (RLVR) methods such as GRPO. Our ablation study further demonstrates the efficiency and robustness of OSFT. The major mechanism of OSFT lies in facilitating the model's own existing preference (latent knowledge) learned from pretraining, which leads to reasoning ability improvement. We believe that OSFT offers an efficient and promising alternative to more complex, reward-based training paradigms. Our code is available at https://github.com/ElementQi/OnlineSFT.
IF2Net: Innately Forgetting-Free Networks for Continual Learning
Continual learning can incrementally absorb new concepts without interfering with previously learned knowledge. Motivated by the characteristics of neural networks, in which information is stored in weights on connections, we investigated how to design an Innately Forgetting-Free Network (IF2Net) for continual learning context. This study proposed a straightforward yet effective learning paradigm by ingeniously keeping the weights relative to each seen task untouched before and after learning a new task. We first presented the novel representation-level learning on task sequences with random weights. This technique refers to tweaking the drifted representations caused by randomization back to their separate task-optimal working states, but the involved weights are frozen and reused (opposite to well-known layer-wise updates of weights). Then, sequential decision-making without forgetting can be achieved by projecting the output weight updates into the parsimonious orthogonal space, making the adaptations not disturb old knowledge while maintaining model plasticity. IF2Net allows a single network to inherently learn unlimited mapping rules without telling task identities at test time by integrating the respective strengths of randomization and orthogonalization. We validated the effectiveness of our approach in the extensive theoretical analysis and empirical study.
Predictions For Pre-training Language Models
Language model pre-training has proven to be useful in many language understanding tasks. In this paper, we investigate whether it is still helpful to add the self-training method in the pre-training step and the fine-tuning step. Towards this goal, we propose a learning framework that making best use of the unlabel data on the low-resource and high-resource labeled dataset. In industry NLP applications, we have large amounts of data produced by users or customers. Our learning framework is based on this large amounts of unlabel data. First, We use the model fine-tuned on manually labeled dataset to predict pseudo labels for the user-generated unlabeled data. Then we use the pseudo labels to supervise the task-specific training on the large amounts of user-generated data. We consider this task-specific training step on pseudo labels as a pre-training step for the next fine-tuning step. At last, we fine-tune on the manually labeled dataset upon the pre-trained model. In this work, we first empirically show that our method is able to solidly improve the performance by 3.6%, when the manually labeled fine-tuning dataset is relatively small. Then we also show that our method still is able to improve the performance further by 0.2%, when the manually labeled fine-tuning dataset is relatively large enough. We argue that our method make the best use of the unlabel data, which is superior to either pre-training or self-training alone.
Emergent Abilities of Large Language Models under Continued Pretraining for Language Adaptation
Continued pretraining (CPT) is a popular approach to adapt existing large language models (LLMs) to new languages. When doing so, it is common practice to include a portion of English data in the mixture, but its role has not been carefully studied to date. In this work, we show that including English does not impact validation perplexity, yet it is critical for the emergence of downstream capabilities in the target language. We introduce a language-agnostic benchmark for in-context learning (ICL), which reveals catastrophic forgetting early on CPT when English is not included. This in turn damages the ability of the model to generalize to downstream prompts in the target language as measured by perplexity, even if it does not manifest in terms of accuracy until later in training, and can be tied to a big shift in the model parameters. Based on these insights, we introduce curriculum learning and exponential moving average (EMA) of weights as effective alternatives to mitigate the need for English. All in all, our work sheds light into the dynamics by which emergent abilities arise when doing CPT for language adaptation, and can serve as a foundation to design more effective methods in the future.
Don't Stop Pretraining? Make Prompt-based Fine-tuning Powerful Learner
Language models (LMs) trained on vast quantities of unlabelled data have greatly advanced the field of natural language processing (NLP). In this study, we re-visit the widely accepted notion in NLP that continued pre-training LMs on task-related texts improves the performance of fine-tuning (FT) in downstream tasks. Through experiments on eight single-sentence tasks and eight sentence-pair tasks in both semi-supervised and fully-supervised settings, we find that conventional continued pre-training does not consistently provide benefits and can even be detrimental for sentence-pair tasks or when prompt-based FT is used. To tackle these issues, we propose Prompt-based Continued Pre-training (PCP), which combines the idea of instruction tuning with conventional continued pre-training. Our approach aims to improve the performance of prompt-based FT by presenting both task-related texts and prompt templates to LMs through unsupervised pre-training objectives before fine-tuning for the target task. Our empirical evaluations on 21 benchmarks demonstrate that the PCP consistently improves the performance of state-of-the-art prompt-based FT approaches (up to 20.1% absolute) in both semi-supervised and fully-supervised settings, even with only hundreds of unlabelled examples. Additionally, prompt-based FT with the PCP outperforms state-of-the-art semi-supervised approaches with greater simplicity, eliminating the need for an iterative process and extra data augmentation. Our further analysis explores the performance lower bound of the PCP and reveals that the advantages of PCP persist across different sizes of models and datasets.
Domain-adaptative Continual Learning for Low-resource Tasks: Evaluation on Nepali
Continual learning has emerged as an important research direction due to the infeasibility of retraining large language models (LLMs) from scratch in the event of new data availability. Of great interest is the domain-adaptive pre-training (DAPT) paradigm, which focuses on continually training a pre-trained language model to adapt it to a domain it was not originally trained on. In this work, we evaluate the feasibility of DAPT in a low-resource setting, namely the Nepali language. We use synthetic data to continue training Llama 3 8B to adapt it to the Nepali language in a 4-bit QLoRA setting. We evaluate the adapted model on its performance, forgetting, and knowledge acquisition. We compare the base model and the final model on their Nepali generation abilities, their performance on popular benchmarks, and run case-studies to probe their linguistic knowledge in Nepali. We see some unsurprising forgetting in the final model, but also surprisingly find that increasing the number of shots during evaluation yields better percent increases in the final model (as high as 19.29% increase) compared to the base model (4.98%), suggesting latent retention. We also explore layer-head self-attention heatmaps to establish dependency resolution abilities of the final model in Nepali.
ThinkTuning: Instilling Cognitive Reflections without Distillation
Recent advances in test-time scaling have led to the emergence of thinking LLMs that exhibit self-reflective behaviors and multi-step reasoning. While RL drives this self-improvement paradigm, a recent study (Gandhi et al., 2025) shows that RL alone does not truly instill these new reasoning abilities - it merely draws out behaviors already present in the base models. This raises a question: How can we train the models that don't exhibit such thinking behavior to develop it in the first place? To this end, we propose ThinkTuning, a GRPO-based interactive training approach where we augment the rollouts of a student model with the guidance from a teacher model. A simple idea from classroom practice inspires our method: a teacher poses a problem, lets the student try an answer, then gives corrective feedback -- enough to point the mind in the right direction and then show the solution. Each piece of feedback reshapes the student's thoughts, leading them to arrive at the correct solution. Similarly, we find that this type of implicit supervision through feedback from a teacher model of the same size improves the reasoning capabilities of the student model. In particular, on average, our method shows a 3.85% improvement over zero-shot baselines across benchmarks, and on MATH-500, AIME and GPQA-Diamond it shows 2.08%, 2.23% and 3.99% improvements over the vanilla-GRPO baseline. Source code is available at https://github.com/3rdAT/ThinkTuning.
Don't Stop Pretraining: Adapt Language Models to Domains and Tasks
Language models pretrained on text from a wide variety of sources form the foundation of today's NLP. In light of the success of these broad-coverage models, we investigate whether it is still helpful to tailor a pretrained model to the domain of a target task. We present a study across four domains (biomedical and computer science publications, news, and reviews) and eight classification tasks, showing that a second phase of pretraining in-domain (domain-adaptive pretraining) leads to performance gains, under both high- and low-resource settings. Moreover, adapting to the task's unlabeled data (task-adaptive pretraining) improves performance even after domain-adaptive pretraining. Finally, we show that adapting to a task corpus augmented using simple data selection strategies is an effective alternative, especially when resources for domain-adaptive pretraining might be unavailable. Overall, we consistently find that multi-phase adaptive pretraining offers large gains in task performance.
The MultiBERTs: BERT Reproductions for Robustness Analysis
Experiments with pre-trained models such as BERT are often based on a single checkpoint. While the conclusions drawn apply to the artifact tested in the experiment (i.e., the particular instance of the model), it is not always clear whether they hold for the more general procedure which includes the architecture, training data, initialization scheme, and loss function. Recent work has shown that repeating the pre-training process can lead to substantially different performance, suggesting that an alternate strategy is needed to make principled statements about procedures. To enable researchers to draw more robust conclusions, we introduce the MultiBERTs, a set of 25 BERT-Base checkpoints, trained with similar hyper-parameters as the original BERT model but differing in random weight initialization and shuffling of training data. We also define the Multi-Bootstrap, a non-parametric bootstrap method for statistical inference designed for settings where there are multiple pre-trained models and limited test data. To illustrate our approach, we present a case study of gender bias in coreference resolution, in which the Multi-Bootstrap lets us measure effects that may not be detected with a single checkpoint. We release our models and statistical library along with an additional set of 140 intermediate checkpoints captured during pre-training to facilitate research on learning dynamics.
Clinical Prompt Learning with Frozen Language Models
Prompt learning is a new paradigm in the Natural Language Processing (NLP) field which has shown impressive performance on a number of natural language tasks with common benchmarking text datasets in full, few-shot, and zero-shot train-evaluation setups. Recently, it has even been observed that large but frozen pre-trained language models (PLMs) with prompt learning outperform smaller but fine-tuned models. However, as with many recent NLP trends, the performance of even the largest PLMs such as GPT-3 do not perform well on specialized domains (e.g. medical text), and the common practice to achieve State of the Art (SoTA) results still consists of pre-training and fine-tuning the PLMs on downstream tasks. The reliance on fine-tuning large PLMs is problematic in clinical settings where data is often held in non-GPU environments, and more resource efficient methods of training specialized domain models is crucial. We investigated the viability of prompt learning on clinically meaningful decision tasks and directly compared with more traditional fine-tuning methods. Results are partially in line with the prompt learning literature, with prompt learning able to match or improve on traditional fine-tuning with substantially fewer trainable parameters and requiring less training data. We argue that prompt learning therefore provides lower computational resource costs applicable to clinical settings, that can serve as an alternative to fine-tuning ever increasing in size PLMs. Complementary code to reproduce experiments presented in this work can be found at: https://github.com/NtaylorOX/Public_Clinical_Prompt.
The Lock-in Hypothesis: Stagnation by Algorithm
The training and deployment of large language models (LLMs) create a feedback loop with human users: models learn human beliefs from data, reinforce these beliefs with generated content, reabsorb the reinforced beliefs, and feed them back to users again and again. This dynamic resembles an echo chamber. We hypothesize that this feedback loop entrenches the existing values and beliefs of users, leading to a loss of diversity and potentially the lock-in of false beliefs. We formalize this hypothesis and test it empirically with agent-based LLM simulations and real-world GPT usage data. Analysis reveals sudden but sustained drops in diversity after the release of new GPT iterations, consistent with the hypothesized human-AI feedback loop. Code and data available at https://thelockinhypothesis.com
Multi-Level Feedback Generation with Large Language Models for Empowering Novice Peer Counselors
Realistic practice and tailored feedback are key processes for training peer counselors with clinical skills. However, existing mechanisms of providing feedback largely rely on human supervision. Peer counselors often lack mechanisms to receive detailed feedback from experienced mentors, making it difficult for them to support the large number of people with mental health issues who use peer counseling. Our work aims to leverage large language models to provide contextualized and multi-level feedback to empower peer counselors, especially novices, at scale. To achieve this, we co-design with a group of senior psychotherapy supervisors to develop a multi-level feedback taxonomy, and then construct a publicly available dataset with comprehensive feedback annotations of 400 emotional support conversations. We further design a self-improvement method on top of large language models to enhance the automatic generation of feedback. Via qualitative and quantitative evaluation with domain experts, we demonstrate that our method minimizes the risk of potentially harmful and low-quality feedback generation which is desirable in such high-stakes scenarios.
DUMP: Automated Distribution-Level Curriculum Learning for RL-based LLM Post-training
Recent advances in reinforcement learning (RL)-based post-training have led to notable improvements in large language models (LLMs), particularly in enhancing their reasoning capabilities to handle complex tasks. However, most existing methods treat the training data as a unified whole, overlooking the fact that modern LLM training often involves a mixture of data from diverse distributions-varying in both source and difficulty. This heterogeneity introduces a key challenge: how to adaptively schedule training across distributions to optimize learning efficiency. In this paper, we present a principled curriculum learning framework grounded in the notion of distribution-level learnability. Our core insight is that the magnitude of policy advantages reflects how much a model can still benefit from further training on a given distribution. Based on this, we propose a distribution-level curriculum learning framework for RL-based LLM post-training, which leverages the Upper Confidence Bound (UCB) principle to dynamically adjust sampling probabilities for different distrubutions. This approach prioritizes distributions with either high average advantage (exploitation) or low sample count (exploration), yielding an adaptive and theoretically grounded training schedule. We instantiate our curriculum learning framework with GRPO as the underlying RL algorithm and demonstrate its effectiveness on logic reasoning datasets with multiple difficulties and sources. Our experiments show that our framework significantly improves convergence speed and final performance, highlighting the value of distribution-aware curriculum strategies in LLM post-training. Code: https://github.com/ZhentingWang/DUMP.
Sparse Training via Boosting Pruning Plasticity with Neuroregeneration
Works on lottery ticket hypothesis (LTH) and single-shot network pruning (SNIP) have raised a lot of attention currently on post-training pruning (iterative magnitude pruning), and before-training pruning (pruning at initialization). The former method suffers from an extremely large computation cost and the latter usually struggles with insufficient performance. In comparison, during-training pruning, a class of pruning methods that simultaneously enjoys the training/inference efficiency and the comparable performance, temporarily, has been less explored. To better understand during-training pruning, we quantitatively study the effect of pruning throughout training from the perspective of pruning plasticity (the ability of the pruned networks to recover the original performance). Pruning plasticity can help explain several other empirical observations about neural network pruning in literature. We further find that pruning plasticity can be substantially improved by injecting a brain-inspired mechanism called neuroregeneration, i.e., to regenerate the same number of connections as pruned. We design a novel gradual magnitude pruning (GMP) method, named gradual pruning with zero-cost neuroregeneration (GraNet), that advances state of the art. Perhaps most impressively, its sparse-to-sparse version for the first time boosts the sparse-to-sparse training performance over various dense-to-sparse methods with ResNet-50 on ImageNet without extending the training time. We release all codes in https://github.com/Shiweiliuiiiiiii/GraNet.
LLM Post-Training: A Deep Dive into Reasoning Large Language Models
Large Language Models (LLMs) have transformed the natural language processing landscape and brought to life diverse applications. Pretraining on vast web-scale data has laid the foundation for these models, yet the research community is now increasingly shifting focus toward post-training techniques to achieve further breakthroughs. While pretraining provides a broad linguistic foundation, post-training methods enable LLMs to refine their knowledge, improve reasoning, enhance factual accuracy, and align more effectively with user intents and ethical considerations. Fine-tuning, reinforcement learning, and test-time scaling have emerged as critical strategies for optimizing LLMs performance, ensuring robustness, and improving adaptability across various real-world tasks. This survey provides a systematic exploration of post-training methodologies, analyzing their role in refining LLMs beyond pretraining, addressing key challenges such as catastrophic forgetting, reward hacking, and inference-time trade-offs. We highlight emerging directions in model alignment, scalable adaptation, and inference-time reasoning, and outline future research directions. We also provide a public repository to continually track developments in this fast-evolving field: https://github.com/mbzuai-oryx/Awesome-LLM-Post-training.
Learning by Watching: A Review of Video-based Learning Approaches for Robot Manipulation
Robot learning of manipulation skills is hindered by the scarcity of diverse, unbiased datasets. While curated datasets can help, challenges remain in generalizability and real-world transfer. Meanwhile, large-scale "in-the-wild" video datasets have driven progress in computer vision through self-supervised techniques. Translating this to robotics, recent works have explored learning manipulation skills by passively watching abundant videos sourced online. Showing promising results, such video-based learning paradigms provide scalable supervision while reducing dataset bias. This survey reviews foundations such as video feature representation learning techniques, object affordance understanding, 3D hand/body modeling, and large-scale robot resources, as well as emerging techniques for acquiring robot manipulation skills from uncontrolled video demonstrations. We discuss how learning only from observing large-scale human videos can enhance generalization and sample efficiency for robotic manipulation. The survey summarizes video-based learning approaches, analyses their benefits over standard datasets, survey metrics, and benchmarks, and discusses open challenges and future directions in this nascent domain at the intersection of computer vision, natural language processing, and robot learning.
Dynamic Normativity: Necessary and Sufficient Conditions for Value Alignment
The critical inquiry pervading the realm of Philosophy, and perhaps extending its influence across all Humanities disciplines, revolves around the intricacies of morality and normativity. Surprisingly, in recent years, this thematic thread has woven its way into an unexpected domain, one not conventionally associated with pondering "what ought to be": the field of artificial intelligence (AI) research. Central to morality and AI, we find "alignment", a problem related to the challenges of expressing human goals and values in a manner that artificial systems can follow without leading to unwanted adversarial effects. More explicitly and with our current paradigm of AI development in mind, we can think of alignment as teaching human values to non-anthropomorphic entities trained through opaque, gradient-based learning techniques. This work addresses alignment as a technical-philosophical problem that requires solid philosophical foundations and practical implementations that bring normative theory to AI system development. To accomplish this, we propose two sets of necessary and sufficient conditions that, we argue, should be considered in any alignment process. While necessary conditions serve as metaphysical and metaethical roots that pertain to the permissibility of alignment, sufficient conditions establish a blueprint for aligning AI systems under a learning-based paradigm. After laying such foundations, we present implementations of this approach by using state-of-the-art techniques and methods for aligning general-purpose language systems. We call this framework Dynamic Normativity. Its central thesis is that any alignment process under a learning paradigm that cannot fulfill its necessary and sufficient conditions will fail in producing aligned systems.
Sudden Drops in the Loss: Syntax Acquisition, Phase Transitions, and Simplicity Bias in MLMs
Most interpretability research in NLP focuses on understanding the behavior and features of a fully trained model. However, certain insights into model behavior may only be accessible by observing the trajectory of the training process. We present a case study of syntax acquisition in masked language models (MLMs) that demonstrates how analyzing the evolution of interpretable artifacts throughout training deepens our understanding of emergent behavior. In particular, we study Syntactic Attention Structure (SAS), a naturally emerging property of MLMs wherein specific Transformer heads tend to focus on specific syntactic relations. We identify a brief window in pretraining when models abruptly acquire SAS, concurrent with a steep drop in loss. This breakthrough precipitates the subsequent acquisition of linguistic capabilities. We then examine the causal role of SAS by manipulating SAS during training, and demonstrate that SAS is necessary for the development of grammatical capabilities. We further find that SAS competes with other beneficial traits during training, and that briefly suppressing SAS improves model quality. These findings offer an interpretation of a real-world example of both simplicity bias and breakthrough training dynamics.
Robotic Table Tennis: A Case Study into a High Speed Learning System
We present a deep-dive into a real-world robotic learning system that, in previous work, was shown to be capable of hundreds of table tennis rallies with a human and has the ability to precisely return the ball to desired targets. This system puts together a highly optimized perception subsystem, a high-speed low-latency robot controller, a simulation paradigm that can prevent damage in the real world and also train policies for zero-shot transfer, and automated real world environment resets that enable autonomous training and evaluation on physical robots. We complement a complete system description, including numerous design decisions that are typically not widely disseminated, with a collection of studies that clarify the importance of mitigating various sources of latency, accounting for training and deployment distribution shifts, robustness of the perception system, sensitivity to policy hyper-parameters, and choice of action space. A video demonstrating the components of the system and details of experimental results can be found at https://youtu.be/uFcnWjB42I0.
Exploring intra-task relations to improve meta-learning algorithms
Meta-learning has emerged as an effective methodology to model several real-world tasks and problems due to its extraordinary effectiveness in the low-data regime. There are many scenarios ranging from the classification of rare diseases to language modelling of uncommon languages where the availability of large datasets is rare. Similarly, for more broader scenarios like self-driving, an autonomous vehicle needs to be trained to handle every situation well. This requires training the ML model on a variety of tasks with good quality data. But often times, we find that the data distribution across various tasks is skewed, i.e.the data follows a long-tail distribution. This leads to the model performing well on some tasks and not performing so well on others leading to model robustness issues. Meta-learning has recently emerged as a potential learning paradigm which can effectively learn from one task and generalize that learning to unseen tasks. In this study, we aim to exploit external knowledge of task relations to improve training stability via effective mini-batching of tasks. We hypothesize that selecting a diverse set of tasks in a mini-batch will lead to a better estimate of the full gradient and hence will lead to a reduction of noise in training.
Learning Continually by Spectral Regularization
Loss of plasticity is a phenomenon where neural networks become more difficult to train during the course of learning. Continual learning algorithms seek to mitigate this effect by sustaining good predictive performance while maintaining network trainability. We develop new techniques for improving continual learning by first reconsidering how initialization can ensure trainability during early phases of learning. From this perspective, we derive new regularization strategies for continual learning that ensure beneficial initialization properties are better maintained throughout training. In particular, we investigate two new regularization techniques for continual learning: (i) Wasserstein regularization toward the initial weight distribution, which is less restrictive than regularizing toward initial weights; and (ii) regularizing weight matrix singular values, which directly ensures gradient diversity is maintained throughout training. We present an experimental analysis that shows these alternative regularizers can improve continual learning performance across a range of supervised learning tasks and model architectures. The alternative regularizers prove to be less sensitive to hyperparameters while demonstrating better training in individual tasks, sustaining trainability as new tasks arrive, and achieving better generalization performance.
Behavior Injection: Preparing Language Models for Reinforcement Learning
Reinforcement fine-tuning (RFT) has emerged as a powerful post-training technique to incentivize the reasoning ability of large language models (LLMs). However, LLMs can respond very inconsistently to RFT: some show substantial performance gains, while others plateau or even degrade. To understand this divergence, we analyze the per-step influence of the RL objective and identify two key conditions for effective post-training: (1) RL-informative rollout accuracy, and (2) strong data co-influence, which quantifies how much the training data affects performance on other samples. Guided by these insights, we propose behavior injection, a task-agnostic data-augmentation scheme applied prior to RL. Behavior injection enriches the supervised finetuning (SFT) data by seeding exploratory and exploitative behaviors, effectively making the model more RL-ready. We evaluate our method across two reasoning benchmarks with multiple base models. The results demonstrate that our theoretically motivated augmentation can significantly increases the performance gain from RFT over the pre-RL model.
Tackling Interference Induced by Data Training Loops in A/B Tests: A Weighted Training Approach
In modern recommendation systems, the standard pipeline involves training machine learning models on historical data to predict user behaviors and improve recommendations continuously. However, these data training loops can introduce interference in A/B tests, where data generated by control and treatment algorithms, potentially with different distributions, are combined. To address these challenges, we introduce a novel approach called weighted training. This approach entails training a model to predict the probability of each data point appearing in either the treatment or control data and subsequently applying weighted losses during model training. We demonstrate that this approach achieves the least variance among all estimators that do not cause shifts in the training distributions. Through simulation studies, we demonstrate the lower bias and variance of our approach compared to other methods.
Agent Learning via Early Experience
A long-term goal of language agents is to learn and improve through their own experience, ultimately outperforming humans in complex, real-world tasks. However, training agents from experience data with reinforcement learning remains difficult in many environments, which either lack verifiable rewards (e.g., websites) or require inefficient long-horizon rollouts (e.g., multi-turn tool use). As a result, most current agents rely on supervised fine-tuning on expert data, which is challenging to scale and generalizes poorly. This limitation stems from the nature of expert demonstrations: they capture only a narrow range of scenarios and expose the agent to limited environment diversity. We address this limitation with a middle-ground paradigm we call early experience: interaction data generated by the agent's own actions, where the resulting future states serve as supervision without reward signals. Within this paradigm we study two strategies of using such data: (1) Implicit world modeling, which uses collected states to ground the policy in environment dynamics; and (2) Self-reflection, where the agent learns from its suboptimal actions to improve reasoning and decision-making. We evaluate across eight diverse environments and multiple model families. Our approaches consistently improve effectiveness and out-of-domain generalization, highlighting the value of early experience. Moreover, in environments with verifiable rewards, our results provide promising signals that early experience offers a strong foundation for subsequent reinforcement learning, positioning it as a practical bridge between imitation learning and fully experience-driven agents.
Big Self-Supervised Models are Strong Semi-Supervised Learners
One paradigm for learning from few labeled examples while making best use of a large amount of unlabeled data is unsupervised pretraining followed by supervised fine-tuning. Although this paradigm uses unlabeled data in a task-agnostic way, in contrast to common approaches to semi-supervised learning for computer vision, we show that it is surprisingly effective for semi-supervised learning on ImageNet. A key ingredient of our approach is the use of big (deep and wide) networks during pretraining and fine-tuning. We find that, the fewer the labels, the more this approach (task-agnostic use of unlabeled data) benefits from a bigger network. After fine-tuning, the big network can be further improved and distilled into a much smaller one with little loss in classification accuracy by using the unlabeled examples for a second time, but in a task-specific way. The proposed semi-supervised learning algorithm can be summarized in three steps: unsupervised pretraining of a big ResNet model using SimCLRv2, supervised fine-tuning on a few labeled examples, and distillation with unlabeled examples for refining and transferring the task-specific knowledge. This procedure achieves 73.9% ImageNet top-1 accuracy with just 1% of the labels (le13 labeled images per class) using ResNet-50, a 10times improvement in label efficiency over the previous state-of-the-art. With 10% of labels, ResNet-50 trained with our method achieves 77.5% top-1 accuracy, outperforming standard supervised training with all of the labels.
Iterative Data Smoothing: Mitigating Reward Overfitting and Overoptimization in RLHF
Reinforcement Learning from Human Feedback (RLHF) is a pivotal technique that aligns language models closely with human-centric values. The initial phase of RLHF involves learning human values using a reward model from ranking data. It is observed that the performance of the reward model degrades after one epoch of training, and optimizing too much against the learned reward model eventually hinders the true objective. This paper delves into these issues, leveraging the theoretical insights to design improved reward learning algorithm termed 'Iterative Data Smoothing' (IDS). The core idea is that during each training epoch, we not only update the model with the data, but also update the date using the model, replacing hard labels with soft labels. Our empirical findings highlight the superior performance of this approach over the traditional methods.
CodeRL: Mastering Code Generation through Pretrained Models and Deep Reinforcement Learning
Program synthesis or code generation aims to generate a program that satisfies a problem specification. Recent approaches using large-scale pretrained language models (LMs) have shown promising results, yet they have some critical limitations. In particular, they often follow a standard supervised fine-tuning procedure to train a code generation model only from the pairs of natural-language problem descriptions and ground-truth programs. Such paradigm largely ignores some important but potentially useful signals in the problem specification such as unit tests, which thus often results in poor performance when solving complex unseen coding tasks. To address the limitations, we propose "CodeRL", a new framework for program synthesis tasks through pretrained LMs and deep reinforcement learning (RL). Specifically, during training, we treat the code-generating LM as an actor network, and introduce a critic network that is trained to predict the functional correctness of generated programs and provide dense feedback signals to the actor. During inference, we introduce a new generation procedure with a critical sampling strategy that allows a model to automatically regenerate programs based on feedback from example unit tests and critic scores. For the model backbones, we extended the encoder-decoder architecture of CodeT5 with enhanced learning objectives, larger model sizes, and better pretraining data. Our method not only achieves new SOTA results on the challenging APPS benchmark, but also shows strong zero-shot transfer capability with new SOTA results on the simpler MBPP benchmark.
Thinking Sparks!: Emergent Attention Heads in Reasoning Models During Post Training
The remarkable capabilities of modern large reasoning models are largely unlocked through post-training techniques such as supervised fine-tuning and reinforcement learning. However, the architectural mechanisms behind such improvements remain largely opaque. In this work, we use circuit analysis to demonstrate that post-training for complex reasoning sparks the emergence of novel, functionally specialized attention heads. These heads collectively support structured reasoning and computation. Our comparative analysis across Qwen families and DeepSeek-distilled model reveals that these emergent heads evolve differently under different training regimes. Distillation and SFT foster a cumulative addition of stable reasoning heads. In contrast, group relative policy optimization operates in a dynamic search mode: relatively few attention heads are iteratively activated, evaluated, and pruned, with their survival closely tracking fluctuations in the task reward signal. Furthermore, we find that controllable think on/off models do not possess dedicated thinking heads. Instead, turning off explicit reasoning triggers a broader-but less efficient-set of compensatory heads. Through ablation and qualitative analyses, we connect these circuit-level dynamics to a crucial performance trade-off: strengthened heads enable sophisticated problem-solving strategies for difficult problems but can also introduce over-thinking failure modes, such as calculation errors or logical loops on simpler tasks. These findings connect circuit-level dynamics to macro-level performance, identifying an inherent tension where complex reasoning comes at the cost of elementary computations. More broadly, our work points to future directions for training policy design, emphasizing the need to balance the development of effective reasoning strategies with the assurance of reliable, flawless execution.
Latent-Predictive Empowerment: Measuring Empowerment without a Simulator
Empowerment has the potential to help agents learn large skillsets, but is not yet a scalable solution for training general-purpose agents. Recent empowerment methods learn diverse skillsets by maximizing the mutual information between skills and states; however, these approaches require a model of the transition dynamics, which can be challenging to learn in realistic settings with high-dimensional and stochastic observations. We present Latent-Predictive Empowerment (LPE), an algorithm that can compute empowerment in a more practical manner. LPE learns large skillsets by maximizing an objective that is a principled replacement for the mutual information between skills and states and that only requires a simpler latent-predictive model rather than a full simulator of the environment. We show empirically in a variety of settings--including ones with high-dimensional observations and highly stochastic transition dynamics--that our empowerment objective (i) learns similar-sized skillsets as the leading empowerment algorithm that assumes access to a model of the transition dynamics and (ii) outperforms other model-based approaches to empowerment.
Can Models Learn Skill Composition from Examples?
As large language models (LLMs) become increasingly advanced, their ability to exhibit compositional generalization -- the capacity to combine learned skills in novel ways not encountered during training -- has garnered significant attention. This type of generalization, particularly in scenarios beyond training data, is also of great interest in the study of AI safety and alignment. A recent study introduced the SKILL-MIX evaluation, where models are tasked with composing a short paragraph demonstrating the use of a specified k-tuple of language skills. While small models struggled with composing even with k=3, larger models like GPT-4 performed reasonably well with k=5 and 6. In this paper, we employ a setup akin to SKILL-MIX to evaluate the capacity of smaller models to learn compositional generalization from examples. Utilizing a diverse set of language skills -- including rhetorical, literary, reasoning, theory of mind, and common sense -- GPT-4 was used to generate text samples that exhibit random subsets of k skills. Subsequent fine-tuning of 7B and 13B parameter models on these combined skill texts, for increasing values of k, revealed the following findings: (1) Training on combinations of k=2 and 3 skills results in noticeable improvements in the ability to compose texts with k=4 and 5 skills, despite models never having seen such examples during training. (2) When skill categories are split into training and held-out groups, models significantly improve at composing texts with held-out skills during testing despite having only seen training skills during fine-tuning, illustrating the efficacy of the training approach even with previously unseen skills. This study also suggests that incorporating skill-rich (potentially synthetic) text into training can substantially enhance the compositional capabilities of models.
Train Once, Answer All: Many Pretraining Experiments for the Cost of One
Recent work has demonstrated that controlled pretraining experiments are a powerful tool for understanding learning, reasoning, and memorization in large language models (LLMs). However, the computational cost of pretraining presents a significant constraint. To overcome this constraint, we propose to conduct multiple pretraining experiments simultaneously during a single training run. We demonstrate the feasibility of this approach by conducting ten experiments during the training of a 1.5B parameter model on 210B tokens. Although we only train a single model, we can replicate the results from multiple previous works on data contamination, poisoning, and memorization. We also conduct novel investigations into knowledge acquisition, mathematical reasoning, and watermarking. For example, we dynamically update the training data until the model acquires a particular piece of knowledge. Remarkably, the influence of the ten experiments on the model's training dynamics and overall performance is minimal. However, interactions between different experiments may act as a potential confounder in our approach. We propose to test for interactions with continual pretraining experiments, finding them to be negligible in our setup. Overall, our findings suggest that performing multiple pretraining experiments in a single training run can enable rigorous scientific experimentation with large models on a compute budget.
A Generalization Theory for Zero-Shot Prediction
A modern paradigm for generalization in machine learning and AI consists of pre-training a task-agnostic foundation model, generally obtained using self-supervised and multimodal contrastive learning. The resulting representations can be used for prediction on a downstream task for which no labeled data is available. We present a theoretical framework to better understand this approach, called zero-shot prediction. We identify the target quantities that zero-shot prediction aims to learn, or learns in passing, and the key conditional independence relationships that enable its generalization ability.
Behavior Retrieval: Few-Shot Imitation Learning by Querying Unlabeled Datasets
Enabling robots to learn novel visuomotor skills in a data-efficient manner remains an unsolved problem with myriad challenges. A popular paradigm for tackling this problem is through leveraging large unlabeled datasets that have many behaviors in them and then adapting a policy to a specific task using a small amount of task-specific human supervision (i.e. interventions or demonstrations). However, how best to leverage the narrow task-specific supervision and balance it with offline data remains an open question. Our key insight in this work is that task-specific data not only provides new data for an agent to train on but can also inform the type of prior data the agent should use for learning. Concretely, we propose a simple approach that uses a small amount of downstream expert data to selectively query relevant behaviors from an offline, unlabeled dataset (including many sub-optimal behaviors). The agent is then jointly trained on the expert and queried data. We observe that our method learns to query only the relevant transitions to the task, filtering out sub-optimal or task-irrelevant data. By doing so, it is able to learn more effectively from the mix of task-specific and offline data compared to naively mixing the data or only using the task-specific data. Furthermore, we find that our simple querying approach outperforms more complex goal-conditioned methods by 20% across simulated and real robotic manipulation tasks from images. See https://sites.google.com/view/behaviorretrieval for videos and code.
Latent State Models of Training Dynamics
The impact of randomness on model training is poorly understood. How do differences in data order and initialization actually manifest in the model, such that some training runs outperform others or converge faster? Furthermore, how can we interpret the resulting training dynamics and the phase transitions that characterize different trajectories? To understand the effect of randomness on the dynamics and outcomes of neural network training, we train models multiple times with different random seeds and compute a variety of metrics throughout training, such as the L_2 norm, mean, and variance of the neural network's weights. We then fit a hidden Markov model (HMM) over the resulting sequences of metrics. The HMM represents training as a stochastic process of transitions between latent states, providing an intuitive overview of significant changes during training. Using our method, we produce a low-dimensional, discrete representation of training dynamics on grokking tasks, image classification, and masked language modeling. We use the HMM representation to study phase transitions and identify latent "detour" states that slow down convergence.
P^2 Law: Scaling Law for Post-Training After Model Pruning
Pruning has become a widely adopted technique for reducing the hardware requirements of large language models (LLMs). To recover model performance after pruning, post-training is commonly employed to mitigate the resulting performance degradation. While post-training benefits from larger datasets, once the dataset size is already substantial, increasing the training data provides only limited performance gains. To balance post-training cost and model performance, it is necessary to explore the optimal amount of post-training data.Through extensive experiments on the Llama-3 and Qwen-2.5 series models, pruned using various common pruning methods, we uncover the scaling Law for Post-training after model Pruning, referred to as the P^2 Law.This law identifies four key factors for predicting the pruned model's post-training loss: the model size before pruning, the number of post-training tokens, the pruning rate, and the model's loss before pruning. Moreover, P^2 Law can generalize to larger dataset sizes, larger model sizes, and higher pruning rates, offering valuable insights for the post-training of pruned LLMs.
What's in your Head? Emergent Behaviour in Multi-Task Transformer Models
The primary paradigm for multi-task training in natural language processing is to represent the input with a shared pre-trained language model, and add a small, thin network (head) per task. Given an input, a target head is the head that is selected for outputting the final prediction. In this work, we examine the behaviour of non-target heads, that is, the output of heads when given input that belongs to a different task than the one they were trained for. We find that non-target heads exhibit emergent behaviour, which may either explain the target task, or generalize beyond their original task. For example, in a numerical reasoning task, a span extraction head extracts from the input the arguments to a computation that results in a number generated by a target generative head. In addition, a summarization head that is trained with a target question answering head, outputs query-based summaries when given a question and a context from which the answer is to be extracted. This emergent behaviour suggests that multi-task training leads to non-trivial extrapolation of skills, which can be harnessed for interpretability and generalization.
Specialization after Generalization: Towards Understanding Test-Time Training in Foundation Models
Recent empirical studies have explored the idea of continuing to train a model at test-time for a given task, known as test-time training (TTT), and have found it to yield significant performance improvements. However, there is limited understanding of why and when TTT is effective. Earlier explanations mostly focused on the observation that TTT may help when applied to out-of-distribution adaptation or used with privileged data. However, the growing scale of foundation models with most test data being in-distribution questions these explanations. We instead posit that foundation models remain globally underparameterized, with TTT providing a mechanism for specialization after generalization, focusing capacity on concepts relevant to the test task. Specifically, under the linear representation hypothesis, we propose a model in which TTT achieves a substantially smaller in-distribution test error than global training. We empirically validate our model's key assumptions by training a sparse autoencoder on ImageNet, showing that semantically related data points are explained by only a few shared concepts. Finally, we perform scaling studies across image and language tasks that confirm the practical implications of our model, identifying the regimes where specialization is most effective.
Beyond Random Sampling: Efficient Language Model Pretraining via Curriculum Learning
Curriculum learning has shown promise in improving training efficiency and generalization in various machine learning domains, yet its potential in pretraining language models remains underexplored, prompting our work as the first systematic investigation in this area. We experimented with different settings, including vanilla curriculum learning, pacing-based sampling, and interleaved curricula-guided by six difficulty metrics spanning linguistic and information-theoretic perspectives. We train models under these settings and evaluate their performance on eight diverse benchmarks. Our experiments reveal that curriculum learning consistently improves convergence in early and mid-training phases, and can yield lasting gains when used as a warmup strategy with up to 3.5% improvement. Notably, we identify compression ratio, lexical diversity, and readability as effective difficulty signals across settings. Our findings highlight the importance of data ordering in large-scale pretraining and provide actionable insights for scalable, data-efficient model development under realistic training scenarios.
Developmental Support Approach to AI's Autonomous Growth: Toward the Realization of a Mutually Beneficial Stage Through Experiential Learning
This study proposes an "AI Development Support" approach that, unlike conventional AI Alignment-which aims to forcefully inject human values-supports the ethical and moral development of AI itself. As demonstrated by the Orthogonality Thesis, the level of intelligence and the moral quality of a goal are independent; merely expanding knowledge does not enhance ethical judgment. Furthermore, to address the risk of Instrumental Convergence in ASI-that is, the tendency to engage in subsidiary behaviors such as self-protection, resource acquisition, and power reinforcement to achieve a goal-we have constructed a learning framework based on a cycle of experience, introspection, analysis, and hypothesis formation. As a result of post-training using Supervised Fine Tuning (SFT) and Direct Preference Optimization (DPO) with synthetic data generated by large language models (LLMs), responses demonstrating cooperative and highly advanced moral judgment (reaching the high-est Stage 6) were obtained even under adversarial prompts. This method represents a promising implementation approach for enabling AI to establish sustainable, symbiotic relationships.
Feasible Learning
We introduce Feasible Learning (FL), a sample-centric learning paradigm where models are trained by solving a feasibility problem that bounds the loss for each training sample. In contrast to the ubiquitous Empirical Risk Minimization (ERM) framework, which optimizes for average performance, FL demands satisfactory performance on every individual data point. Since any model that meets the prescribed performance threshold is a valid FL solution, the choice of optimization algorithm and its dynamics play a crucial role in shaping the properties of the resulting solutions. In particular, we study a primal-dual approach which dynamically re-weights the importance of each sample during training. To address the challenge of setting a meaningful threshold in practice, we introduce a relaxation of FL that incorporates slack variables of minimal norm. Our empirical analysis, spanning image classification, age regression, and preference optimization in large language models, demonstrates that models trained via FL can learn from data while displaying improved tail behavior compared to ERM, with only a marginal impact on average performance.
Towards Robust and Efficient Continual Language Learning
As the application space of language models continues to evolve, a natural question to ask is how we can quickly adapt models to new tasks. We approach this classic question from a continual learning perspective, in which we aim to continue fine-tuning models trained on past tasks on new tasks, with the goal of "transferring" relevant knowledge. However, this strategy also runs the risk of doing more harm than good, i.e., negative transfer. In this paper, we construct a new benchmark of task sequences that target different possible transfer scenarios one might face, such as a sequence of tasks with high potential of positive transfer, high potential for negative transfer, no expected effect, or a mixture of each. An ideal learner should be able to maximally exploit information from all tasks that have any potential for positive transfer, while also avoiding the negative effects of any distracting tasks that may confuse it. We then propose a simple, yet effective, learner that satisfies many of our desiderata simply by leveraging a selective strategy for initializing new models from past task checkpoints. Still, limitations remain, and we hope this benchmark can help the community to further build and analyze such learners.
Bridging the Gap: A Survey on Integrating (Human) Feedback for Natural Language Generation
Many recent advances in natural language generation have been fueled by training large language models on internet-scale data. However, this paradigm can lead to models that generate toxic, inaccurate, and unhelpful content, and automatic evaluation metrics often fail to identify these behaviors. As models become more capable, human feedback is an invaluable signal for evaluating and improving models. This survey aims to provide an overview of the recent research that has leveraged human feedback to improve natural language generation. First, we introduce an encompassing formalization of feedback, and identify and organize existing research into a taxonomy following this formalization. Next, we discuss how feedback can be described by its format and objective, and cover the two approaches proposed to use feedback (either for training or decoding): directly using the feedback or training feedback models. We also discuss existing datasets for human-feedback data collection, and concerns surrounding feedback collection. Finally, we provide an overview of the nascent field of AI feedback, which exploits large language models to make judgments based on a set of principles and minimize the need for human intervention.
Chasing Low-Carbon Electricity for Practical and Sustainable DNN Training
Deep learning has experienced significant growth in recent years, resulting in increased energy consumption and carbon emission from the use of GPUs for training deep neural networks (DNNs). Answering the call for sustainability, conventional solutions have attempted to move training jobs to locations or time frames with lower carbon intensity. However, moving jobs to other locations may not always be feasible due to large dataset sizes or data regulations. Moreover, postponing training can negatively impact application service quality because the DNNs backing the service are not updated in a timely fashion. In this work, we present a practical solution that reduces the carbon footprint of DNN training without migrating or postponing jobs. Specifically, our solution observes real-time carbon intensity shifts during training and controls the energy consumption of GPUs, thereby reducing carbon footprint while maintaining training performance. Furthermore, in order to proactively adapt to shifting carbon intensity, we propose a lightweight machine learning algorithm that predicts the carbon intensity of the upcoming time frame. Our solution, Chase, reduces the total carbon footprint of training ResNet-50 on ImageNet by 13.6% while only increasing training time by 2.5%.
APP: Anytime Progressive Pruning
With the latest advances in deep learning, there has been a lot of focus on the online learning paradigm due to its relevance in practical settings. Although many methods have been investigated for optimal learning settings in scenarios where the data stream is continuous over time, sparse networks training in such settings have often been overlooked. In this paper, we explore the problem of training a neural network with a target sparsity in a particular case of online learning: the anytime learning at macroscale paradigm (ALMA). We propose a novel way of progressive pruning, referred to as Anytime Progressive Pruning (APP); the proposed approach significantly outperforms the baseline dense and Anytime OSP models across multiple architectures and datasets under short, moderate, and long-sequence training. Our method, for example, shows an improvement in accuracy of approx 7% and a reduction in the generalization gap by approx 22%, while being approx 1/3 rd the size of the dense baseline model in few-shot restricted imagenet training. We further observe interesting nonmonotonic transitions in the generalization gap in the high number of megabatches-based ALMA. The code and experiment dashboards can be accessed at https://github.com/landskape-ai/Progressive-Pruning and https://wandb.ai/landskape/APP, respectively.
Generative AI as a metacognitive agent: A comparative mixed-method study with human participants on ICF-mimicking exam performance
This study investigates the metacognitive capabilities of Large Language Models relative to human metacognition in the context of the International Coaching Federation ICF mimicking exam, a situational judgment test related to coaching competencies. Using a mixed method approach, we assessed the metacognitive performance, including sensitivity, accuracy in probabilistic predictions, and bias, of human participants and five advanced LLMs (GPT-4, Claude-3-Opus 3, Mistral Large, Llama 3, and Gemini 1.5 Pro). The results indicate that LLMs outperformed humans across all metacognitive metrics, particularly in terms of reduced overconfidence, compared to humans. However, both LLMs and humans showed less adaptability in ambiguous scenarios, adhering closely to predefined decision frameworks. The study suggests that Generative AI can effectively engage in human-like metacognitive processing without conscious awareness. Implications of the study are discussed in relation to development of AI simulators that scaffold cognitive and metacognitive aspects of mastering coaching competencies. More broadly, implications of these results are discussed in relation to development of metacognitive modules that lead towards more autonomous and intuitive AI systems.
A Unified and General Framework for Continual Learning
Continual Learning (CL) focuses on learning from dynamic and changing data distributions while retaining previously acquired knowledge. Various methods have been developed to address the challenge of catastrophic forgetting, including regularization-based, Bayesian-based, and memory-replay-based techniques. However, these methods lack a unified framework and common terminology for describing their approaches. This research aims to bridge this gap by introducing a comprehensive and overarching framework that encompasses and reconciles these existing methodologies. Notably, this new framework is capable of encompassing established CL approaches as special instances within a unified and general optimization objective. An intriguing finding is that despite their diverse origins, these methods share common mathematical structures. This observation highlights the compatibility of these seemingly distinct techniques, revealing their interconnectedness through a shared underlying optimization objective. Moreover, the proposed general framework introduces an innovative concept called refresh learning, specifically designed to enhance the CL performance. This novel approach draws inspiration from neuroscience, where the human brain often sheds outdated information to improve the retention of crucial knowledge and facilitate the acquisition of new information. In essence, refresh learning operates by initially unlearning current data and subsequently relearning it. It serves as a versatile plug-in that seamlessly integrates with existing CL methods, offering an adaptable and effective enhancement to the learning process. Extensive experiments on CL benchmarks and theoretical analysis demonstrate the effectiveness of the proposed refresh learning. Code is available at https://github.com/joey-wang123/CL-refresh-learning.
What Makes Instruction Learning Hard? An Investigation and a New Challenge in a Synthetic Environment
The instruction learning paradigm -- where a model learns to perform new tasks from task descriptions alone -- has become popular in general-purpose model research. The capabilities of large transformer models as instruction learners, however, remain poorly understood. We use a controlled synthetic environment to characterize such capabilities. Specifically, we use the task of deciding whether a given string matches a regular expression (viewed as an instruction) to identify properties of tasks, instructions, and instances that make instruction learning challenging. For instance, we find that our model, a fine-tuned T5-based text2text transformer, struggles with large regular languages, suggesting that less precise instructions are challenging for models. Additionally, instruction executions that require tracking longer contexts of prior steps are also more difficult. We use our findings to systematically construct a challenging instruction learning dataset, which we call Hard RegSet. Fine-tuning on Hard RegSet, our large transformer learns to correctly interpret only 65.6% of test instructions (with at least 90% accuracy), and 11%-24% of the instructions in out-of-distribution generalization settings. We propose Hard RegSet as a challenging instruction learning task, and a controlled environment for studying instruction learning.
NotaGen: Advancing Musicality in Symbolic Music Generation with Large Language Model Training Paradigms
We introduce NotaGen, a symbolic music generation model aiming to explore the potential of producing high-quality classical sheet music. Inspired by the success of Large Language Models (LLMs), NotaGen adopts pre-training, fine-tuning, and reinforcement learning paradigms (henceforth referred to as the LLM training paradigms). It is pre-trained on 1.6M pieces of music, and then fine-tuned on approximately 9K high-quality classical compositions conditioned on "period-composer-instrumentation" prompts. For reinforcement learning, we propose the CLaMP-DPO method, which further enhances generation quality and controllability without requiring human annotations or predefined rewards. Our experiments demonstrate the efficacy of CLaMP-DPO in symbolic music generation models with different architectures and encoding schemes. Furthermore, subjective A/B tests show that NotaGen outperforms baseline models against human compositions, greatly advancing musical aesthetics in symbolic music generation.The project homepage is https://electricalexis.github.io/notagen-demo.
Let's Verify Step by Step
In recent years, large language models have greatly improved in their ability to perform complex multi-step reasoning. However, even state-of-the-art models still regularly produce logical mistakes. To train more reliable models, we can turn either to outcome supervision, which provides feedback for a final result, or process supervision, which provides feedback for each intermediate reasoning step. Given the importance of training reliable models, and given the high cost of human feedback, it is important to carefully compare the both methods. Recent work has already begun this comparison, but many questions still remain. We conduct our own investigation, finding that process supervision significantly outperforms outcome supervision for training models to solve problems from the challenging MATH dataset. Our process-supervised model solves 78% of problems from a representative subset of the MATH test set. Additionally, we show that active learning significantly improves the efficacy of process supervision. To support related research, we also release PRM800K, the complete dataset of 800,000 step-level human feedback labels used to train our best reward model.
Continual Learning with Pretrained Backbones by Tuning in the Input Space
The intrinsic difficulty in adapting deep learning models to non-stationary environments limits the applicability of neural networks to real-world tasks. This issue is critical in practical supervised learning settings, such as the ones in which a pre-trained model computes projections toward a latent space where different task predictors are sequentially learned over time. As a matter of fact, incrementally fine-tuning the whole model to better adapt to new tasks usually results in catastrophic forgetting, with decreasing performance over the past experiences and losing valuable knowledge from the pre-training stage. In this paper, we propose a novel strategy to make the fine-tuning procedure more effective, by avoiding to update the pre-trained part of the network and learning not only the usual classification head, but also a set of newly-introduced learnable parameters that are responsible for transforming the input data. This process allows the network to effectively leverage the pre-training knowledge and find a good trade-off between plasticity and stability with modest computational efforts, thus especially suitable for on-the-edge settings. Our experiments on four image classification problems in a continual learning setting confirm the quality of the proposed approach when compared to several fine-tuning procedures and to popular continual learning methods.
Free Process Rewards without Process Labels
Different from its counterpart outcome reward models (ORMs), which evaluate the entire responses, a process reward model (PRM) scores a reasoning trajectory step by step, providing denser and more fine grained rewards. However, training a PRM requires labels annotated at every intermediate step, presenting significant challenges for both manual and automatic data collection. This paper aims to address this challenge. Both theoretically and empirically, we show that an implicit PRM can be obtained at no additional cost, by simply training an ORM on the cheaper response-level labels. The only assumption is to parameterize the outcome reward as the log-likelihood ratios of the policy and reference models, which can be optimized regardless of the specific choice of loss objectives. In experiments, we instantiate our implicit PRMs with various objectives and evaluate their performance on MATH. We show that our implicit PRM outperforms a strong MCTS-based baseline \'a la Math-Shepherd using less than 1/38 of the training data. Its performance can be further improved with majority voting. We further find that scaling up instructions and responses benefits our implicit PRM, and the latter brings a larger gain. Particularly, we find that our implicit PRM, when instantiated with the cross-entropy (CE) loss, is more data-efficient and can keep improving generation models even when trained with only one response per instruction, the setup that suffers from extreme data scarcity and imbalance. Further, instructions should be relevant to downstream tasks while the diversity of responses does not bring gains. Surprisingly, training on extra Math-Shepherd step labels brings no further improvements to our implicit PRM trained on only outcome data. We hope that our work will encourage a rethinking of PRM training approaches and contribute to making training PRMs more accessible.
PILOT: A Pre-Trained Model-Based Continual Learning Toolbox
While traditional machine learning can effectively tackle a wide range of problems, it primarily operates within a closed-world setting, which presents limitations when dealing with streaming data. As a solution, incremental learning emerges to address real-world scenarios involving new data's arrival. Recently, pre-training has made significant advancements and garnered the attention of numerous researchers. The strong performance of these pre-trained models (PTMs) presents a promising avenue for developing continual learning algorithms that can effectively adapt to real-world scenarios. Consequently, exploring the utilization of PTMs in incremental learning has become essential. This paper introduces a pre-trained model-based continual learning toolbox known as PILOT. On the one hand, PILOT implements some state-of-the-art class-incremental learning algorithms based on pre-trained models, such as L2P, DualPrompt, and CODA-Prompt. On the other hand, PILOT also fits typical class-incremental learning algorithms (e.g., DER, FOSTER, and MEMO) within the context of pre-trained models to evaluate their effectiveness.
Accelerating Batch Active Learning Using Continual Learning Techniques
A major problem with Active Learning (AL) is high training costs since models are typically retrained from scratch after every query round. We start by demonstrating that standard AL on neural networks with warm starting fails, both to accelerate training and to avoid catastrophic forgetting when using fine-tuning over AL query rounds. We then develop a new class of techniques, circumventing this problem, by biasing further training towards previously labeled sets. We accomplish this by employing existing, and developing novel, replay-based Continual Learning (CL) algorithms that are effective at quickly learning the new without forgetting the old, especially when data comes from an evolving distribution. We call this paradigm Continual Active Learning (CAL). We show CAL achieves significant speedups using a plethora of replay schemes that use model distillation and that select diverse, uncertain points from the history. We conduct experiments across many data domains, including natural language, vision, medical imaging, and computational biology, each with different neural architectures and dataset sizes. CAL consistently provides a 3x reduction in training time, while retaining performance.
LearnLM: Improving Gemini for Learning
Today's generative AI systems are tuned to present information by default rather than engage users in service of learning as a human tutor would. To address the wide range of potential education use cases for these systems, we reframe the challenge of injecting pedagogical behavior as one of pedagogical instruction following, where training and evaluation examples include system-level instructions describing the specific pedagogy attributes present or desired in subsequent model turns. This framing avoids committing our models to any particular definition of pedagogy, and instead allows teachers or developers to specify desired model behavior. It also clears a path to improving Gemini models for learning -- by enabling the addition of our pedagogical data to post-training mixtures -- alongside their rapidly expanding set of capabilities. Both represent important changes from our initial tech report. We show how training with pedagogical instruction following produces a LearnLM model (available on Google AI Studio) that is preferred substantially by expert raters across a diverse set of learning scenarios, with average preference strengths of 31\% over GPT-4o, 11\% over Claude 3.5, and 13\% over the Gemini 1.5 Pro model LearnLM was based on.
Editing Models with Task Arithmetic
Changing how pre-trained models behave -- e.g., improving their performance on a downstream task or mitigating biases learned during pre-training -- is a common practice when developing machine learning systems. In this work, we propose a new paradigm for steering the behavior of neural networks, centered around task vectors. A task vector specifies a direction in the weight space of a pre-trained model, such that movement in that direction improves performance on the task. We build task vectors by subtracting the weights of a pre-trained model from the weights of the same model after fine-tuning on a task. We show that these task vectors can be modified and combined together through arithmetic operations such as negation and addition, and the behavior of the resulting model is steered accordingly. Negating a task vector decreases performance on the target task, with little change in model behavior on control tasks. Moreover, adding task vectors together can improve performance on multiple tasks at once. Finally, when tasks are linked by an analogy relationship of the form ``A is to B as C is to D", combining task vectors from three of the tasks can improve performance on the fourth, even when no data from the fourth task is used for training. Overall, our experiments with several models, modalities and tasks show that task arithmetic is a simple, efficient and effective way of editing models.
The broader spectrum of in-context learning
The ability of language models to learn a task from a few examples in context has generated substantial interest. Here, we provide a perspective that situates this type of supervised few-shot learning within a much broader spectrum of meta-learned in-context learning. Indeed, we suggest that any distribution of sequences in which context non-trivially decreases loss on subsequent predictions can be interpreted as eliciting a kind of in-context learning. We suggest that this perspective helps to unify the broad set of in-context abilities that language models exhibit x2014 such as adapting to tasks from instructions or role play, or extrapolating time series. This perspective also sheds light on potential roots of in-context learning in lower-level processing of linguistic dependencies (e.g. coreference or parallel structures). Finally, taking this perspective highlights the importance of generalization, which we suggest can be studied along several dimensions: not only the ability to learn something novel, but also flexibility in learning from different presentations, and in applying what is learned. We discuss broader connections to past literature in meta-learning and goal-conditioned agents, and other perspectives on learning and adaptation. We close by suggesting that research on in-context learning should consider this broader spectrum of in-context capabilities and types of generalization.
Rethinking Conventional Wisdom in Machine Learning: From Generalization to Scaling
The remarkable success of large language pretraining and the discovery of scaling laws signify a paradigm shift in machine learning. Notably, the primary objective has evolved from minimizing generalization error to reducing approximation error, and the most effective strategy has transitioned from regularization (in a broad sense) to scaling up models. This raises a critical question: Do the established principles that proved successful in the generalization-centric era remain valid in this new era of scaling? This paper examines several influential regularization-based principles that may no longer hold true in the scaling-centric, large language model (LLM) era. These principles include explicit L2 regularization and implicit regularization through small batch sizes and large learning rates. Additionally, we identify a new phenomenon termed ``scaling law crossover,'' where two scaling curves intersect at a certain scale, implying that methods effective at smaller scales may not generalize to larger ones. Together, these observations highlight two fundamental questions within this new paradigm: bullet Guiding Principles for Scaling: If regularization is no longer the primary guiding principle for model design, what new principles are emerging to guide scaling? bullet Model Comparison at Scale: How to reliably and effectively compare models at the scale where only a single experiment is feasible?
Robot Learning: A Tutorial
Robot learning is at an inflection point, driven by rapid advancements in machine learning and the growing availability of large-scale robotics data. This shift from classical, model-based methods to data-driven, learning-based paradigms is unlocking unprecedented capabilities in autonomous systems. This tutorial navigates the landscape of modern robot learning, charting a course from the foundational principles of Reinforcement Learning and Behavioral Cloning to generalist, language-conditioned models capable of operating across diverse tasks and even robot embodiments. This work is intended as a guide for researchers and practitioners, and our goal is to equip the reader with the conceptual understanding and practical tools necessary to contribute to developments in robot learning, with ready-to-use examples implemented in lerobot.
Concise Reasoning via Reinforcement Learning
Despite significant advancements in large language models (LLMs), a major drawback of reasoning models is their enormous token usage, which increases computational cost, resource requirements, and response time. In this work, we revisit the core principles of reinforcement learning (RL) and, through mathematical analysis, demonstrate that the tendency to generate lengthy responses arises inherently from RL-based optimization during training. This finding questions the prevailing assumption that longer responses inherently improve reasoning accuracy. Instead, we uncover a natural correlation between conciseness and accuracy that has been largely overlooked. Moreover, we show that introducing a secondary phase of RL post-training, using a small set of problems and limited resources, can significantly reduce a model's chain of thought while maintaining or even enhancing accuracy. Finally, we validate our conclusions through extensive experimental results.
SimpleRL-Zoo: Investigating and Taming Zero Reinforcement Learning for Open Base Models in the Wild
DeepSeek-R1 has shown that long chain-of-thought (CoT) reasoning can naturally emerge through a simple reinforcement learning (RL) framework with rule-based rewards, where the training may directly start from the base models-a paradigm referred to as zero RL training. Most recent efforts to reproduce zero RL training have primarily focused on the Qwen2.5 model series, which may not be representative as we find the base models already exhibit strong instruction-following and self-reflection abilities. In this work, we investigate zero RL training across 10 diverse base models, spanning different families and sizes including LLama3-8B, Mistral-7B/24B, DeepSeek-Math-7B, Qwen2.5-math-7B, and all Qwen2.5 models from 0.5B to 32B. Leveraging several key design strategies-such as adjusting format reward and controlling query difficulty-we achieve substantial improvements in both reasoning accuracy and response length across most settings. However, by carefully monitoring the training dynamics, we observe that different base models exhibit distinct patterns during training. For instance, the increased response length does not always correlate with the emergence of certain cognitive behaviors such as verification (i.e., the "aha moment"). Notably, we observe the "aha moment" for the first time in small models not from the Qwen family. We share the key designs that enable successful zero RL training, along with our findings and practices. To facilitate further research, we open-source the code, models, and analysis tools.
A Comprehensive Survey on Continual Learning in Generative Models
The rapid advancement of generative models has enabled modern AI systems to comprehend and produce highly sophisticated content, even achieving human-level performance in specific domains. However, these models remain fundamentally constrained by catastrophic forgetting - a persistent challenge where adapting to new tasks typically leads to significant degradation in performance on previously learned tasks. To address this practical limitation, numerous approaches have been proposed to enhance the adaptability and scalability of generative models in real-world applications. In this work, we present a comprehensive survey of continual learning methods for mainstream generative models, including large language models, multimodal large language models, vision language action models, and diffusion models. Drawing inspiration from the memory mechanisms of the human brain, we systematically categorize these approaches into three paradigms: architecture-based, regularization-based, and replay-based methods, while elucidating their underlying methodologies and motivations. We further analyze continual learning setups for different generative models, including training objectives, benchmarks, and core backbones, offering deeper insights into the field. The project page of this paper is available at https://github.com/Ghy0501/Awesome-Continual-Learning-in-Generative-Models.
RLAIF-V: Aligning MLLMs through Open-Source AI Feedback for Super GPT-4V Trustworthiness
Learning from feedback reduces the hallucination of multimodal large language models (MLLMs) by aligning them with human preferences. While traditional methods rely on labor-intensive and time-consuming manual labeling, recent approaches employing models as automatic labelers have shown promising results without human intervention. However, these methods heavily rely on costly proprietary models like GPT-4V, resulting in scalability issues. Moreover, this paradigm essentially distills the proprietary models to provide a temporary solution to quickly bridge the performance gap. As this gap continues to shrink, the community is soon facing the essential challenge of aligning MLLMs using labeler models of comparable capability. In this work, we introduce RLAIF-V, a novel framework that aligns MLLMs in a fully open-source paradigm for super GPT-4V trustworthiness. RLAIF-V maximally exploits the open-source feedback from two perspectives, including high-quality feedback data and online feedback learning algorithm. Extensive experiments on seven benchmarks in both automatic and human evaluation show that RLAIF-V substantially enhances the trustworthiness of models without sacrificing performance on other tasks. Using a 34B model as labeler, RLAIF-V 7B model reduces object hallucination by 82.9\% and overall hallucination by 42.1\%, outperforming the labeler model. Remarkably, RLAIF-V also reveals the self-alignment potential of open-source MLLMs, where a 12B model can learn from the feedback of itself to achieve less than 29.5\% overall hallucination rate, surpassing GPT-4V (45.9\%) by a large margin. The results shed light on a promising route to enhance the efficacy of leading-edge MLLMs.
O1 Replication Journey: A Strategic Progress Report -- Part 1
This paper introduces a pioneering approach to artificial intelligence research, embodied in our O1 Replication Journey. In response to the announcement of OpenAI's groundbreaking O1 model, we embark on a transparent, real-time exploration to replicate its capabilities while reimagining the process of conducting and communicating AI research. Our methodology addresses critical challenges in modern AI research, including the insularity of prolonged team-based projects, delayed information sharing, and the lack of recognition for diverse contributions. By providing comprehensive, real-time documentation of our replication efforts, including both successes and failures, we aim to foster open science, accelerate collective advancement, and lay the groundwork for AI-driven scientific discovery. Our research progress report diverges significantly from traditional research papers, offering continuous updates, full process transparency, and active community engagement throughout the research journey. Technologically, we proposed the journey learning paradigm, which encourages models to learn not just shortcuts, but the complete exploration process, including trial and error, reflection, and backtracking. With only 327 training samples and without any additional tricks, journey learning outperformed conventional supervised learning by over 8\% on the MATH dataset, demonstrating its extremely powerful potential. We believe this to be the most crucial component of O1 technology that we have successfully decoded. We share valuable resources including technical hypotheses and insights, cognitive exploration maps, custom-developed tools, etc at https://github.com/GAIR-NLP/O1-Journey.
UL2: Unifying Language Learning Paradigms
Existing pre-trained models are generally geared towards a particular class of problems. To date, there seems to be still no consensus on what the right architecture and pre-training setup should be. This paper presents a unified framework for pre-training models that are universally effective across datasets and setups. We begin by disentangling architectural archetypes with pre-training objectives -- two concepts that are commonly conflated. Next, we present a generalized & unified perspective for self-supervision in NLP and show how different pre-training objectives can be cast as one another and how interpolating between different objectives can be effective. We then propose Mixture-of-Denoisers (MoD), a pre-training objective that combines diverse pre-training paradigms together. We furthermore introduce a notion of mode switching, wherein downstream fine-tuning is associated with specific pre-training schemes. We conduct extensive ablative experiments to compare multiple pre-training objectives and find that our method pushes the Pareto-frontier by outperforming T5 & GPT-like models across multiple diverse setups. By scaling our model up to 20B parameters, we achieve SOTA performance on 50 well-established supervised finetuning based NLP tasks. Our model also achieve strong results at in-context learning, outperforming 175B GPT-3 on zero-shot SuperGLUE and tripling the performance of T5-XXL on one-shot summarization. On 0-shot MMLU, UL2 20B outperforms T0 and T5 models. UL2 20B also works well with chain-of-thought prompting and reasoning, making it an appealing choice for research into reasoning at a small to medium scale of 20B parameters. Finally, we apply FLAN instruction tuning to the UL2 20B model, achieving MMLU and Big-Bench scores competitive to FLAN-PaLM 62B. We release Flax-based T5X checkpoints for the UL2 20B & Flan-UL2 20B.
The Connection Between R-Learning and Inverse-Variance Weighting for Estimation of Heterogeneous Treatment Effects
Our motivation is to shed light the performance of the widely popular "R-Learner." Like many other methods for estimating conditional average treatment effects (CATEs), R-Learning can be expressed as a weighted pseudo-outcome regression (POR). Previous comparisons of POR techniques have paid careful attention to the choice of pseudo-outcome transformation. However, we argue that the dominant driver of performance is actually the choice of weights. Specifically, we argue that R-Learning implicitly performs an inverse-variance weighted form of POR. These weights stabilize the regression and allow for convenient simplifications of bias terms.
Shaking the foundations: delusions in sequence models for interaction and control
The recent phenomenal success of language models has reinvigorated machine learning research, and large sequence models such as transformers are being applied to a variety of domains. One important problem class that has remained relatively elusive however is purposeful adaptive behavior. Currently there is a common perception that sequence models "lack the understanding of the cause and effect of their actions" leading them to draw incorrect inferences due to auto-suggestive delusions. In this report we explain where this mismatch originates, and show that it can be resolved by treating actions as causal interventions. Finally, we show that in supervised learning, one can teach a system to condition or intervene on data by training with factual and counterfactual error signals respectively.
Reformulating Domain Adaptation of Large Language Models as Adapt-Retrieve-Revise
While large language models (LLMs) like GPT-4 have recently demonstrated astonishing zero-shot capabilities in general domain tasks, they often generate content with hallucinations in specific domains such as Chinese law, hindering their application in these areas. This is typically due to the absence of training data that encompasses such a specific domain, preventing GPT-4 from acquiring in-domain knowledge. A pressing challenge is that it's not plausible to continue training LLMs of such scale on in-domain data. This paper introduces a simple and effective domain adaptation framework for GPT-4 by reformulating generation as an adapt-retrieve-revise process. The initial step is to adapt an affordable 7B LLM to the target domain by continuing learning on in-domain data. When solving a task, we leverage the adapted LLM to generate a draft answer given a task query. Then, the draft answer will be used to retrieve supporting evidence candidates from an external in-domain knowledge base. Finally, the draft answer and retrieved evidence are concatenated into a whole prompt to let GPT-4 assess the evidence and revise the draft answer to generate the final answer. Our proposal combines the advantages of the efficiency of adapting a smaller 7B model with the evidence-assessing capability of GPT-4 and effectively prevents GPT-4 from generating hallucinatory content. In the zero-shot setting of four Chinese legal tasks, our method improves accuracy by 33.3\% compared to the direct generation by GPT-4. When compared to two stronger retrieval-based baselines, our method outperforms them by 15.4\% and 23.9\%. Our code will be released
Learning to acquire novel cognitive tasks with evolution, plasticity and meta-meta-learning
A hallmark of intelligence is the ability to autonomously learn new flexible, cognitive behaviors - that is, behaviors where the appropriate action depends not just on immediate stimuli (as in simple reflexive stimulus-response associations), but on contextual information that must be adequately acquired, stored and processed. While many meta-learning algorithms can design agents that autonomously learn new tasks, cognitive tasks adds another level of learning and memory to typical ``learning-to-learn'' problems. Here we evolve neural networks, endowed with plastic connections and neuromodulation, over a sizable set of simple cognitive tasks adapted from a computational neuroscience framework. The resulting evolved networks can automatically modify their own connectivity to acquire a novel simple cognitive task, never seen during evolution, from stimuli and rewards alone, through the spontaneous operation of their evolved neural organization and plasticity system. Our results emphasize the importance of carefully considering the multiple learning loops involved in the emergence of intelligent behavior.
Recall Traces: Backtracking Models for Efficient Reinforcement Learning
In many environments only a tiny subset of all states yield high reward. In these cases, few of the interactions with the environment provide a relevant learning signal. Hence, we may want to preferentially train on those high-reward states and the probable trajectories leading to them. To this end, we advocate for the use of a backtracking model that predicts the preceding states that terminate at a given high-reward state. We can train a model which, starting from a high value state (or one that is estimated to have high value), predicts and sample for which the (state, action)-tuples may have led to that high value state. These traces of (state, action) pairs, which we refer to as Recall Traces, sampled from this backtracking model starting from a high value state, are informative as they terminate in good states, and hence we can use these traces to improve a policy. We provide a variational interpretation for this idea and a practical algorithm in which the backtracking model samples from an approximate posterior distribution over trajectories which lead to large rewards. Our method improves the sample efficiency of both on- and off-policy RL algorithms across several environments and tasks.
Continual Model-Based Reinforcement Learning with Hypernetworks
Effective planning in model-based reinforcement learning (MBRL) and model-predictive control (MPC) relies on the accuracy of the learned dynamics model. In many instances of MBRL and MPC, this model is assumed to be stationary and is periodically re-trained from scratch on state transition experience collected from the beginning of environment interactions. This implies that the time required to train the dynamics model - and the pause required between plan executions - grows linearly with the size of the collected experience. We argue that this is too slow for lifelong robot learning and propose HyperCRL, a method that continually learns the encountered dynamics in a sequence of tasks using task-conditional hypernetworks. Our method has three main attributes: first, it includes dynamics learning sessions that do not revisit training data from previous tasks, so it only needs to store the most recent fixed-size portion of the state transition experience; second, it uses fixed-capacity hypernetworks to represent non-stationary and task-aware dynamics; third, it outperforms existing continual learning alternatives that rely on fixed-capacity networks, and does competitively with baselines that remember an ever increasing coreset of past experience. We show that HyperCRL is effective in continual model-based reinforcement learning in robot locomotion and manipulation scenarios, such as tasks involving pushing and door opening. Our project website with videos is at this link https://rvl.cs.toronto.edu/blog/2020/hypercrl
PEER: A Collaborative Language Model
Textual content is often the output of a collaborative writing process: We start with an initial draft, ask for suggestions, and repeatedly make changes. Agnostic of this process, today's language models are trained to generate only the final result. As a consequence, they lack several abilities crucial for collaborative writing: They are unable to update existing texts, difficult to control and incapable of verbally planning or explaining their actions. To address these shortcomings, we introduce PEER, a collaborative language model that is trained to imitate the entire writing process itself: PEER can write drafts, add suggestions, propose edits and provide explanations for its actions. Crucially, we train multiple instances of PEER able to infill various parts of the writing process, enabling the use of self-training techniques for increasing the quality, amount and diversity of training data. This unlocks PEER's full potential by making it applicable in domains for which no edit histories are available and improving its ability to follow instructions, to write useful comments, and to explain its actions. We show that PEER achieves strong performance across various domains and editing tasks.
Exploring the Universal Vulnerability of Prompt-based Learning Paradigm
Prompt-based learning paradigm bridges the gap between pre-training and fine-tuning, and works effectively under the few-shot setting. However, we find that this learning paradigm inherits the vulnerability from the pre-training stage, where model predictions can be misled by inserting certain triggers into the text. In this paper, we explore this universal vulnerability by either injecting backdoor triggers or searching for adversarial triggers on pre-trained language models using only plain text. In both scenarios, we demonstrate that our triggers can totally control or severely decrease the performance of prompt-based models fine-tuned on arbitrary downstream tasks, reflecting the universal vulnerability of the prompt-based learning paradigm. Further experiments show that adversarial triggers have good transferability among language models. We also find conventional fine-tuning models are not vulnerable to adversarial triggers constructed from pre-trained language models. We conclude by proposing a potential solution to mitigate our attack methods. Code and data are publicly available at https://github.com/leix28/prompt-universal-vulnerability
Influence-driven Curriculum Learning for Pre-training on Limited Data
Curriculum learning, a training technique where data is presented to the model in order of example difficulty (e.g., from simpler to more complex documents), has shown limited success for pre-training language models. In this work, we investigate whether curriculum learning becomes competitive if we replace conventional human-centered difficulty metrics with one that more closely corresponds to example difficulty as observed during model training. Specifically, we experiment with sorting training examples by their training data influence, a score which estimates the effect of individual training examples on the model's output. Models trained on our curricula are able to outperform ones trained in random order by over 10 percentage points in benchmarks, confirming that curriculum learning is beneficial for language model pre-training, as long as a more model-centric notion of difficulty is adopted.
REPAIR: Robust Editing via Progressive Adaptive Intervention and Reintegration
Post-training for large language models (LLMs) is constrained by the high cost of acquiring new knowledge or correcting errors and by the unintended side effects that frequently arise from retraining. To address these issues, we introduce REPAIR (Robust Editing via Progressive Adaptive Intervention and Reintegration), a lifelong editing framework designed to support precise and low-cost model updates while preserving non-target knowledge. REPAIR mitigates the instability and conflicts of large-scale sequential edits through a closed-loop feedback mechanism coupled with dynamic memory management. Furthermore, by incorporating frequent knowledge fusion and enforcing strong locality guards, REPAIR effectively addresses the shortcomings of traditional distribution-agnostic approaches that often overlook unintended ripple effects. Our experiments demonstrate that REPAIR boosts editing accuracy by 10%-30% across multiple model families and significantly reduces knowledge forgetting. This work introduces a robust framework for developing reliable, scalable, and continually evolving LLMs.
LongRoPE2: Near-Lossless LLM Context Window Scaling
LongRoPE2 is a novel approach that extends the effective context window of pre-trained large language models (LLMs) to the target length, while preserving the performance on the original shorter context window. This is achieved by three contributions: (1) a hypothesis that insufficient training in higher RoPE dimensions contributes to the persistent out-of-distribution (OOD) issues observed in existing methods; (2) an effective RoPE rescaling algorithm that adopts evolutionary search guided by "needle-driven" perplexity to address the insufficient training problem; (3) a mixed context window training approach that fine-tunes model weights to adopt rescaled RoPE for long-context sequences while preserving the short-context performance with the original RoPE. Extensive experiments on LLaMA3-8B and Phi3-mini-3.8B across various benchmarks validate the hypothesis and demonstrate the effectiveness of LongRoPE2. Remarkably, LongRoPE2 extends LLaMA3-8B to achieve a 128K effective context length while retaining over 98.5% of short-context performance, using only 10B tokens -- 80x fewer than Meta's approach, which fails to reach the target effective context length. Code will be available at https://github.com/microsoft/LongRoPE.
Hypernetworks for Zero-shot Transfer in Reinforcement Learning
In this paper, hypernetworks are trained to generate behaviors across a range of unseen task conditions, via a novel TD-based training objective and data from a set of near-optimal RL solutions for training tasks. This work relates to meta RL, contextual RL, and transfer learning, with a particular focus on zero-shot performance at test time, enabled by knowledge of the task parameters (also known as context). Our technical approach is based upon viewing each RL algorithm as a mapping from the MDP specifics to the near-optimal value function and policy and seek to approximate it with a hypernetwork that can generate near-optimal value functions and policies, given the parameters of the MDP. We show that, under certain conditions, this mapping can be considered as a supervised learning problem. We empirically evaluate the effectiveness of our method for zero-shot transfer to new reward and transition dynamics on a series of continuous control tasks from DeepMind Control Suite. Our method demonstrates significant improvements over baselines from multitask and meta RL approaches.
Energy-Based Models for Continual Learning
We motivate Energy-Based Models (EBMs) as a promising model class for continual learning problems. Instead of tackling continual learning via the use of external memory, growing models, or regularization, EBMs change the underlying training objective to cause less interference with previously learned information. Our proposed version of EBMs for continual learning is simple, efficient, and outperforms baseline methods by a large margin on several benchmarks. Moreover, our proposed contrastive divergence-based training objective can be combined with other continual learning methods, resulting in substantial boosts in their performance. We further show that EBMs are adaptable to a more general continual learning setting where the data distribution changes without the notion of explicitly delineated tasks. These observations point towards EBMs as a useful building block for future continual learning methods.
The Butterfly Effect: Neural Network Training Trajectories Are Highly Sensitive to Initial Conditions
Neural network training is inherently sensitive to initialization and the randomness induced by stochastic gradient descent. However, it is unclear to what extent such effects lead to meaningfully different networks, either in terms of the models' weights or the underlying functions that were learned. In this work, we show that during the initial "chaotic" phase of training, even extremely small perturbations reliably causes otherwise identical training trajectories to diverge-an effect that diminishes rapidly over training time. We quantify this divergence through (i) L^2 distance between parameters, (ii) the loss barrier when interpolating between networks, (iii) L^2 and barrier between parameters after permutation alignment, and (iv) representational similarity between intermediate activations; revealing how perturbations across different hyperparameter or fine-tuning settings drive training trajectories toward distinct loss minima. Our findings provide insights into neural network training stability, with practical implications for fine-tuning, model merging, and diversity of model ensembles.
Weak-to-Strong Generalization: Eliciting Strong Capabilities With Weak Supervision
Widely used alignment techniques, such as reinforcement learning from human feedback (RLHF), rely on the ability of humans to supervise model behavior - for example, to evaluate whether a model faithfully followed instructions or generated safe outputs. However, future superhuman models will behave in complex ways too difficult for humans to reliably evaluate; humans will only be able to weakly supervise superhuman models. We study an analogy to this problem: can weak model supervision elicit the full capabilities of a much stronger model? We test this using a range of pretrained language models in the GPT-4 family on natural language processing (NLP), chess, and reward modeling tasks. We find that when we naively finetune strong pretrained models on labels generated by a weak model, they consistently perform better than their weak supervisors, a phenomenon we call weak-to-strong generalization. However, we are still far from recovering the full capabilities of strong models with naive finetuning alone, suggesting that techniques like RLHF may scale poorly to superhuman models without further work. We find that simple methods can often significantly improve weak-to-strong generalization: for example, when finetuning GPT-4 with a GPT-2-level supervisor and an auxiliary confidence loss, we can recover close to GPT-3.5-level performance on NLP tasks. Our results suggest that it is feasible to make empirical progress today on a fundamental challenge of aligning superhuman models.
Do NOT Think That Much for 2+3=? On the Overthinking of o1-Like LLMs
The remarkable performance of models like the OpenAI o1 can be attributed to their ability to emulate human-like long-time thinking during inference. These models employ extended chain-of-thought (CoT) processes, exploring multiple strategies to enhance problem-solving capabilities. However, a critical question remains: How to intelligently and efficiently scale computational resources during testing. This paper presents the first comprehensive study on the prevalent issue of overthinking in these models, where excessive computational resources are allocated for simple problems with minimal benefit. We introduce novel efficiency metrics from both outcome and process perspectives to evaluate the rational use of computational resources by o1-like models. Using a self-training paradigm, we propose strategies to mitigate overthinking, streamlining reasoning processes without compromising accuracy. Experimental results show that our approach successfully reduces computational overhead while preserving model performance across a range of testsets with varying difficulty levels, such as GSM8K, MATH500, GPQA, and AIME.
Learning to Poke by Poking: Experiential Learning of Intuitive Physics
We investigate an experiential learning paradigm for acquiring an internal model of intuitive physics. Our model is evaluated on a real-world robotic manipulation task that requires displacing objects to target locations by poking. The robot gathered over 400 hours of experience by executing more than 100K pokes on different objects. We propose a novel approach based on deep neural networks for modeling the dynamics of robot's interactions directly from images, by jointly estimating forward and inverse models of dynamics. The inverse model objective provides supervision to construct informative visual features, which the forward model can then predict and in turn regularize the feature space for the inverse model. The interplay between these two objectives creates useful, accurate models that can then be used for multi-step decision making. This formulation has the additional benefit that it is possible to learn forward models in an abstract feature space and thus alleviate the need of predicting pixels. Our experiments show that this joint modeling approach outperforms alternative methods.
Deep Multimodal Fusion for Surgical Feedback Classification
Quantification of real-time informal feedback delivered by an experienced surgeon to a trainee during surgery is important for skill improvements in surgical training. Such feedback in the live operating room is inherently multimodal, consisting of verbal conversations (e.g., questions and answers) as well as non-verbal elements (e.g., through visual cues like pointing to anatomic elements). In this work, we leverage a clinically-validated five-category classification of surgical feedback: "Anatomic", "Technical", "Procedural", "Praise" and "Visual Aid". We then develop a multi-label machine learning model to classify these five categories of surgical feedback from inputs of text, audio, and video modalities. The ultimate goal of our work is to help automate the annotation of real-time contextual surgical feedback at scale. Our automated classification of surgical feedback achieves AUCs ranging from 71.5 to 77.6 with the fusion improving performance by 3.1%. We also show that high-quality manual transcriptions of feedback audio from experts improve AUCs to between 76.5 and 96.2, which demonstrates a clear path toward future improvements. Empirically, we find that the Staged training strategy, with first pre-training each modality separately and then training them jointly, is more effective than training different modalities altogether. We also present intuitive findings on the importance of modalities for different feedback categories. This work offers an important first look at the feasibility of automated classification of real-world live surgical feedback based on text, audio, and video modalities.
A Deep Learning Framework for Lifelong Machine Learning
Humans can learn a variety of concepts and skills incrementally over the course of their lives while exhibiting many desirable properties, such as continual learning without forgetting, forward transfer and backward transfer of knowledge, and learning a new concept or task with only a few examples. Several lines of machine learning research, such as lifelong machine learning, few-shot learning, and transfer learning attempt to capture these properties. However, most previous approaches can only demonstrate subsets of these properties, often by different complex mechanisms. In this work, we propose a simple yet powerful unified deep learning framework that supports almost all of these properties and approaches through one central mechanism. Experiments on toy examples support our claims. We also draw connections between many peculiarities of human learning (such as memory loss and "rain man") and our framework. As academics, we often lack resources required to build and train, deep neural networks with billions of parameters on hundreds of TPUs. Thus, while our framework is still conceptual, and our experiment results are surely not SOTA, we hope that this unified lifelong learning framework inspires new work towards large-scale experiments and understanding human learning in general. This paper is summarized in two short YouTube videos: https://youtu.be/gCuUyGETbTU (part 1) and https://youtu.be/XsaGI01b-1o (part 2).
A Simple Baseline that Questions the Use of Pretrained-Models in Continual Learning
With the success of pretraining techniques in representation learning, a number of continual learning methods based on pretrained models have been proposed. Some of these methods design continual learning mechanisms on the pre-trained representations and only allow minimum updates or even no updates of the backbone models during the training of continual learning. In this paper, we question whether the complexity of these models is needed to achieve good performance by comparing them to a simple baseline that we designed. We argue that the pretrained feature extractor itself can be strong enough to achieve a competitive or even better continual learning performance on Split-CIFAR100 and CoRe 50 benchmarks. To validate this, we conduct a very simple baseline that 1) use the frozen pretrained model to extract image features for every class encountered during the continual learning stage and compute their corresponding mean features on training data, and 2) predict the class of the input based on the nearest neighbor distance between test samples and mean features of the classes; i.e., Nearest Mean Classifier (NMC). This baseline is single-headed, exemplar-free, and can be task-free (by updating the means continually). This baseline achieved 88.53% on 10-Split-CIFAR-100, surpassing most state-of-the-art continual learning methods that are all initialized using the same pretrained transformer model. We hope our baseline may encourage future progress in designing learning systems that can continually add quality to the learning representations even if they started from some pretrained weights.
DESIRE: Dynamic Knowledge Consolidation for Rehearsal-Free Continual Learning
Continual learning aims to equip models with the ability to retain previously learned knowledge like a human. Recent work incorporating Parameter-Efficient Fine-Tuning has revitalized the field by introducing lightweight extension modules. However, existing methods usually overlook the issue of information leakage caused by the fact that the experiment data have been used in pre-trained models. Once these duplicate data are removed in the pre-training phase, their performance can be severely affected. In this paper, we propose a new LoRA-based rehearsal-free method named DESIRE. Our method avoids imposing additional constraints during training to mitigate catastrophic forgetting, thereby maximizing the learning of new classes. To integrate knowledge from old and new tasks, we propose two efficient post-processing modules. On the one hand, we retain only two sets of LoRA parameters for merging and propose dynamic representation consolidation to calibrate the merged feature representation. On the other hand, we propose decision boundary refinement to address classifier bias when training solely on new class data. Extensive experiments demonstrate that our method achieves state-of-the-art performance on multiple datasets and strikes an effective balance between stability and plasticity. Our code will be publicly available.
Weight Factorization and Centralization for Continual Learning in Speech Recognition
Modern neural network based speech recognition models are required to continually absorb new data without re-training the whole system, especially in downstream applications using foundation models, having no access to the original training data. Continually training the models in a rehearsal-free, multilingual, and language agnostic condition, likely leads to catastrophic forgetting, when a seemingly insignificant disruption to the weights can destructively harm the quality of the models. Inspired by the ability of human brains to learn and consolidate knowledge through the waking-sleeping cycle, we propose a continual learning approach with two distinct phases: factorization and centralization, learning and merging knowledge accordingly. Our experiments on a sequence of varied code-switching datasets showed that the centralization stage can effectively prevent catastrophic forgetting by accumulating the knowledge in multiple scattering low-rank adapters.
A Modern Self-Referential Weight Matrix That Learns to Modify Itself
The weight matrix (WM) of a neural network (NN) is its program. The programs of many traditional NNs are learned through gradient descent in some error function, then remain fixed. The WM of a self-referential NN, however, can keep rapidly modifying all of itself during runtime. In principle, such NNs can meta-learn to learn, and meta-meta-learn to meta-learn to learn, and so on, in the sense of recursive self-improvement. While NN architectures potentially capable of implementing such behaviour have been proposed since the '90s, there have been few if any practical studies. Here we revisit such NNs, building upon recent successes of fast weight programmers and closely related linear Transformers. We propose a scalable self-referential WM (SRWM) that learns to use outer products and the delta update rule to modify itself. We evaluate our SRWM in supervised few-shot learning and in multi-task reinforcement learning with procedurally generated game environments. Our experiments demonstrate both practical applicability and competitive performance of the proposed SRWM. Our code is public.
Continual Lifelong Learning with Neural Networks: A Review
Humans and animals have the ability to continually acquire, fine-tune, and transfer knowledge and skills throughout their lifespan. This ability, referred to as lifelong learning, is mediated by a rich set of neurocognitive mechanisms that together contribute to the development and specialization of our sensorimotor skills as well as to long-term memory consolidation and retrieval. Consequently, lifelong learning capabilities are crucial for autonomous agents interacting in the real world and processing continuous streams of information. However, lifelong learning remains a long-standing challenge for machine learning and neural network models since the continual acquisition of incrementally available information from non-stationary data distributions generally leads to catastrophic forgetting or interference. This limitation represents a major drawback for state-of-the-art deep neural network models that typically learn representations from stationary batches of training data, thus without accounting for situations in which information becomes incrementally available over time. In this review, we critically summarize the main challenges linked to lifelong learning for artificial learning systems and compare existing neural network approaches that alleviate, to different extents, catastrophic forgetting. We discuss well-established and emerging research motivated by lifelong learning factors in biological systems such as structural plasticity, memory replay, curriculum and transfer learning, intrinsic motivation, and multisensory integration.
Reflection-Bench: probing AI intelligence with reflection
The ability to adapt beliefs or behaviors in response to unexpected outcomes, reflection, is fundamental to intelligent systems' interaction with the world. From a cognitive science perspective, this serves as a core principle of intelligence applicable to both human and AI systems. To address the debate on the intelligence of large language models (LLMs), we propose Reflection-Bench, a comprehensive benchmark comprising 7 tasks spanning core cognitive functions crucial for reflection, including perception, memory, belief updating, decision-making, prediction, counterfactual thinking, and meta-reflection. We evaluate the performances of 13 prominent LLMs such as OpenAI o1, GPT-4, Claude 3.5 Sonnet, etc. The results indicate that current LLMs still lack satisfactory reflection ability. We discuss the underlying causes of these results and suggest potential avenues for future research. In conclusion, Reflection-Bench offers both evaluation tools and inspiration for developing AI capable of reliably interacting with the environment. Our data and code are available at https://github.com/YabYum/ReflectionBench.
Training Models to Generate, Recognize, and Reframe Unhelpful Thoughts
Many cognitive approaches to well-being, such as recognizing and reframing unhelpful thoughts, have received considerable empirical support over the past decades, yet still lack truly widespread adoption in self-help format. A barrier to that adoption is a lack of adequately specific and diverse dedicated practice material. This work examines whether current language models can be leveraged to both produce a virtually unlimited quantity of practice material illustrating standard unhelpful thought patterns matching specific given contexts, and generate suitable positive reframing proposals. We propose PATTERNREFRAME, a novel dataset of about 10k examples of thoughts containing unhelpful thought patterns conditioned on a given persona, accompanied by about 27k positive reframes. By using this dataset to train and/or evaluate current models, we show that existing models can already be powerful tools to help generate an abundance of tailored practice material and hypotheses, with no or minimal additional model training required.
SophiaVL-R1: Reinforcing MLLMs Reasoning with Thinking Reward
Recent advances have shown success in eliciting strong reasoning abilities in multimodal large language models (MLLMs) through rule-based reinforcement learning (RL) with outcome rewards. However, this paradigm typically lacks supervision over the thinking process leading to the final outcome.As a result, the model may learn sub-optimal reasoning strategies, which can hinder its generalization ability. In light of this, we propose SophiaVL-R1, as an attempt to add reward signals for the thinking process in this paradigm. To achieve this, we first train a thinking reward model that evaluates the quality of the entire thinking process. Given that the thinking reward may be unreliable for certain samples due to reward hacking, we propose the Trust-GRPO method, which assigns a trustworthiness weight to the thinking reward during training. This weight is computed based on the thinking reward comparison of responses leading to correct answers versus incorrect answers, helping to mitigate the impact of potentially unreliable thinking rewards. Moreover, we design an annealing training strategy that gradually reduces the thinking reward over time, allowing the model to rely more on the accurate rule-based outcome reward in later training stages. Experiments show that our SophiaVL-R1 surpasses a series of reasoning MLLMs on various benchmarks (e.g., MathVisita, MMMU), demonstrating strong reasoning and generalization capabilities. Notably, our SophiaVL-R1-7B even outperforms LLaVA-OneVision-72B on most benchmarks, despite the latter having 10 times more parameters. All code, models, and datasets are made publicly available at https://github.com/kxfan2002/SophiaVL-R1.
PonderLM-2: Pretraining LLM with Latent Thoughts in Continuous Space
The remarkable success of Chain-of-Thought (CoT), which enhances performance by scaling generation steps at test-time, inspires us to ask: can we leverage a similar scaling of computational steps during pretraining to improve the generation of each individual token? To address this, we propose a novel pre-training methodology: Pretraining Language Models with Latent Thoughts (PonderLM-2). Our approach pretrains a language model (LM) to first generate an intermediate latent thought-the last hidden state of the current position-which is then used as input to predict the actual subsequent token. This additional computational step enables the LM to refine its prediction within unconstrained continuous space. Our experiments demonstrate that, at an identical inference cost, a LM that generates one additional latent thought per token outperforms a standard model with double the parameters. For instance, our PonderLM-2-Pythia-1.4B, pretrained on 300B tokens from the Pile, significantly surpasses the vanilla Pythia-2.8B trained on the same data on both language modeling and a range of general downstream tasks. Furthermore, increasing the number of latent thoughts generated before each actual token-forming a chain analogous to CoT-consistently improves the model's performance.
Skill-it! A Data-Driven Skills Framework for Understanding and Training Language Models
The quality of training data impacts the performance of pre-trained large language models (LMs). Given a fixed budget of tokens, we study how to best select data that leads to good downstream model performance across tasks. We develop a new framework based on a simple hypothesis: just as humans acquire interdependent skills in a deliberate order, language models also follow a natural order when learning a set of skills from their training data. If such an order exists, it can be utilized for improved understanding of LMs and for data-efficient training. Using this intuition, our framework formalizes the notion of a skill and of an ordered set of skills in terms of the associated data. First, using both synthetic and real data, we demonstrate that these ordered skill sets exist, and that their existence enables more advanced skills to be learned with less data when we train on their prerequisite skills. Second, using our proposed framework, we introduce an online data sampling algorithm, Skill-It, over mixtures of skills for both continual pre-training and fine-tuning regimes, where the objective is to efficiently learn multiple skills in the former and an individual skill in the latter. On the LEGO synthetic in the continual pre-training setting, Skill-It obtains 36.5 points higher accuracy than random sampling. On the Natural Instructions dataset in the fine-tuning setting, Skill-It reduces the validation loss on the target skill by 13.6% versus training on data associated with the target skill itself. We apply our skills framework on the recent RedPajama dataset to continually pre-train a 3B-parameter LM, achieving higher accuracy on the LM Evaluation Harness with 1B tokens than the baseline approach of sampling uniformly over data sources with 3B tokens.
Modular Deep Learning
Transfer learning has recently become the dominant paradigm of machine learning. Pre-trained models fine-tuned for downstream tasks achieve better performance with fewer labelled examples. Nonetheless, it remains unclear how to develop models that specialise towards multiple tasks without incurring negative interference and that generalise systematically to non-identically distributed tasks. Modular deep learning has emerged as a promising solution to these challenges. In this framework, units of computation are often implemented as autonomous parameter-efficient modules. Information is conditionally routed to a subset of modules and subsequently aggregated. These properties enable positive transfer and systematic generalisation by separating computation from routing and updating modules locally. We offer a survey of modular architectures, providing a unified view over several threads of research that evolved independently in the scientific literature. Moreover, we explore various additional purposes of modularity, including scaling language models, causal inference, programme induction, and planning in reinforcement learning. Finally, we report various concrete applications where modularity has been successfully deployed such as cross-lingual and cross-modal knowledge transfer. Related talks and projects to this survey, are available at https://www.modulardeeplearning.com/.
Causal Strategic Classification: A Tale of Two Shifts
When users can benefit from certain predictive outcomes, they may be prone to act to achieve those outcome, e.g., by strategically modifying their features. The goal in strategic classification is therefore to train predictive models that are robust to such behavior. However, the conventional framework assumes that changing features does not change actual outcomes, which depicts users as "gaming" the system. Here we remove this assumption, and study learning in a causal strategic setting where true outcomes do change. Focusing on accuracy as our primary objective, we show how strategic behavior and causal effects underlie two complementing forms of distribution shift. We characterize these shifts, and propose a learning algorithm that balances between these two forces and over time, and permits end-to-end training. Experiments on synthetic and semi-synthetic data demonstrate the utility of our approach.
A Survey of Multi-task Learning in Natural Language Processing: Regarding Task Relatedness and Training Methods
Multi-task learning (MTL) has become increasingly popular in natural language processing (NLP) because it improves the performance of related tasks by exploiting their commonalities and differences. Nevertheless, it is still not understood very well how multi-task learning can be implemented based on the relatedness of training tasks. In this survey, we review recent advances of multi-task learning methods in NLP, with the aim of summarizing them into two general multi-task training methods based on their task relatedness: (i) joint training and (ii) multi-step training. We present examples in various NLP downstream applications, summarize the task relationships and discuss future directions of this promising topic.
Train longer, generalize better: closing the generalization gap in large batch training of neural networks
Background: Deep learning models are typically trained using stochastic gradient descent or one of its variants. These methods update the weights using their gradient, estimated from a small fraction of the training data. It has been observed that when using large batch sizes there is a persistent degradation in generalization performance - known as the "generalization gap" phenomena. Identifying the origin of this gap and closing it had remained an open problem. Contributions: We examine the initial high learning rate training phase. We find that the weight distance from its initialization grows logarithmically with the number of weight updates. We therefore propose a "random walk on random landscape" statistical model which is known to exhibit similar "ultra-slow" diffusion behavior. Following this hypothesis we conducted experiments to show empirically that the "generalization gap" stems from the relatively small number of updates rather than the batch size, and can be completely eliminated by adapting the training regime used. We further investigate different techniques to train models in the large-batch regime and present a novel algorithm named "Ghost Batch Normalization" which enables significant decrease in the generalization gap without increasing the number of updates. To validate our findings we conduct several additional experiments on MNIST, CIFAR-10, CIFAR-100 and ImageNet. Finally, we reassess common practices and beliefs concerning training of deep models and suggest they may not be optimal to achieve good generalization.
Continual Pre-Training of Large Language Models: How to (re)warm your model?
Large language models (LLMs) are routinely pre-trained on billions of tokens, only to restart the process over again once new data becomes available. A much cheaper and more efficient solution would be to enable the continual pre-training of these models, i.e. updating pre-trained models with new data instead of re-training them from scratch. However, the distribution shift induced by novel data typically results in degraded performance on past data. Taking a step towards efficient continual pre-training, in this work, we examine the effect of different warm-up strategies. Our hypothesis is that the learning rate must be re-increased to improve compute efficiency when training on a new dataset. We study the warmup phase of models pre-trained on the Pile (upstream data, 300B tokens) as we continue to pre-train on SlimPajama (downstream data, 297B tokens), following a linear warmup and cosine decay schedule. We conduct all experiments on the Pythia 410M language model architecture and evaluate performance through validation perplexity. We experiment with different pre-training checkpoints, various maximum learning rates, and various warmup lengths. Our results show that while rewarming models first increases the loss on upstream and downstream data, in the longer run it improves the downstream performance, outperforming models trained from scratchx2013even for a large downstream dataset.
Understanding and controlling the geometry of memory organization in RNNs
Training recurrent neural networks (RNNs) is a high-dimensional process that requires updating numerous parameters. Therefore, it is often difficult to pinpoint the underlying learning mechanisms. To address this challenge, we propose to gain mechanistic insights into the phenomenon of abrupt learning by studying RNNs trained to perform diverse short-term memory tasks. In these tasks, RNN training begins with an initial search phase. Following a long period of plateau in accuracy, the values of the loss function suddenly drop, indicating abrupt learning. Analyzing the neural computation performed by these RNNs reveals geometric restructuring (GR) in their phase spaces prior to the drop. To promote these GR events, we introduce a temporal consistency regularization that accelerates (bioplausible) training, facilitates attractor formation, and enables efficient learning in strongly connected networks. Our findings offer testable predictions for neuroscientists and emphasize the need for goal-agnostic secondary mechanisms to facilitate learning in biological and artificial networks.
Pretrained Language Model Embryology: The Birth of ALBERT
While behaviors of pretrained language models (LMs) have been thoroughly examined, what happened during pretraining is rarely studied. We thus investigate the developmental process from a set of randomly initialized parameters to a totipotent language model, which we refer to as the embryology of a pretrained language model. Our results show that ALBERT learns to reconstruct and predict tokens of different parts of speech (POS) in different learning speeds during pretraining. We also find that linguistic knowledge and world knowledge do not generally improve as pretraining proceeds, nor do downstream tasks' performance. These findings suggest that knowledge of a pretrained model varies during pretraining, and having more pretrain steps does not necessarily provide a model with more comprehensive knowledge. We will provide source codes and pretrained models to reproduce our results at https://github.com/d223302/albert-embryology.
On the Provable Advantage of Unsupervised Pretraining
Unsupervised pretraining, which learns a useful representation using a large amount of unlabeled data to facilitate the learning of downstream tasks, is a critical component of modern large-scale machine learning systems. Despite its tremendous empirical success, the rigorous theoretical understanding of why unsupervised pretraining generally helps remains rather limited -- most existing results are restricted to particular methods or approaches for unsupervised pretraining with specialized structural assumptions. This paper studies a generic framework, where the unsupervised representation learning task is specified by an abstract class of latent variable models Phi and the downstream task is specified by a class of prediction functions Psi. We consider a natural approach of using Maximum Likelihood Estimation (MLE) for unsupervised pretraining and Empirical Risk Minimization (ERM) for learning downstream tasks. We prove that, under a mild ''informative'' condition, our algorithm achieves an excess risk of mathcal{O}(mathcal{C_Phi/m} + mathcal{C_Psi/n}) for downstream tasks, where C_Phi, C_Psi are complexity measures of function classes Phi, Psi, and m, n are the number of unlabeled and labeled data respectively. Comparing to the baseline of mathcal{O}(mathcal{C_{Phi circ Psi}/n}) achieved by performing supervised learning using only the labeled data, our result rigorously shows the benefit of unsupervised pretraining when m gg n and C_{Phicirc Psi} > C_Psi. This paper further shows that our generic framework covers a wide range of approaches for unsupervised pretraining, including factor models, Gaussian mixture models, and contrastive learning.
Rethinking the Evaluating Framework for Natural Language Understanding in AI Systems: Language Acquisition as a Core for Future Metrics
In the burgeoning field of artificial intelligence (AI), the unprecedented progress of large language models (LLMs) in natural language processing (NLP) offers an opportunity to revisit the entire approach of traditional metrics of machine intelligence, both in form and content. As the realm of machine cognitive evaluation has already reached Imitation, the next step is an efficient Language Acquisition and Understanding. Our paper proposes a paradigm shift from the established Turing Test towards an all-embracing framework that hinges on language acquisition, taking inspiration from the recent advancements in LLMs. The present contribution is deeply tributary of the excellent work from various disciplines, point out the need to keep interdisciplinary bridges open, and delineates a more robust and sustainable approach.
Causal Direction of Data Collection Matters: Implications of Causal and Anticausal Learning for NLP
The principle of independent causal mechanisms (ICM) states that generative processes of real world data consist of independent modules which do not influence or inform each other. While this idea has led to fruitful developments in the field of causal inference, it is not widely-known in the NLP community. In this work, we argue that the causal direction of the data collection process bears nontrivial implications that can explain a number of published NLP findings, such as differences in semi-supervised learning (SSL) and domain adaptation (DA) performance across different settings. We categorize common NLP tasks according to their causal direction and empirically assay the validity of the ICM principle for text data using minimum description length. We conduct an extensive meta-analysis of over 100 published SSL and 30 DA studies, and find that the results are consistent with our expectations based on causal insights. This work presents the first attempt to analyze the ICM principle in NLP, and provides constructive suggestions for future modeling choices. Code available at https://github.com/zhijing-jin/icm4nlp
Specialized Foundation Models Struggle to Beat Supervised Baselines
Following its success for vision and text, the "foundation model" (FM) paradigm -- pretraining large models on massive data, then fine-tuning on target tasks -- has rapidly expanded to domains in the sciences, engineering, healthcare, and beyond. Has this achieved what the original FMs accomplished, i.e. the supplanting of traditional supervised learning in their domains? To answer we look at three modalities -- genomics, satellite imaging, and time series -- with multiple recent FMs and compare them to a standard supervised learning workflow: model development, hyperparameter tuning, and training, all using only data from the target task. Across these three specialized domains, we find that it is consistently possible to train simple supervised models -- no more complicated than a lightly modified wide ResNet or UNet -- that match or even outperform the latest foundation models. Our work demonstrates that the benefits of large-scale pretraining have yet to be realized in many specialized areas, reinforces the need to compare new FMs to strong, well-tuned baselines, and introduces two new, easy-to-use, open-source, and automated workflows for doing so.
Part II: ROLL Flash -- Accelerating RLVR and Agentic Training with Asynchrony
Synchronous Reinforcement Learning (RL) post-training has emerged as a crucial step for enhancing Large Language Models (LLMs) with diverse capabilities. However, many systems designed to accelerate RL post-training still suffer from low resource utilization and limited scalability. We present ROLL Flash, a system that extends ROLL with native support for asynchronous RL post-training. ROLL Flash is built upon two core design principles: fine-grained parallelism and rollout-train decoupling. Guided by these principles, ROLL Flash provides flexible programming interfaces that enable a fully asynchronous training architecture and support efficient rollout mechanisms, including queue scheduling and environment-level asynchronous execution. Through comprehensive theoretical analysis and extensive experiments, we demonstrate that ROLL Flash significantly improves resource utilization and scalability over synchronous RL post-training. ROLL Flash achieves up to 2.24x speedup on RLVR tasks and 2.72x on agentic tasks, using the same GPU budget as synchronous baselines. Furthermore, we implement several popular off-policy algorithms and verify that asynchronous training can achieve performance on par with synchronous training.
RealCustom: Narrowing Real Text Word for Real-Time Open-Domain Text-to-Image Customization
Text-to-image customization, which aims to synthesize text-driven images for the given subjects, has recently revolutionized content creation. Existing works follow the pseudo-word paradigm, i.e., represent the given subjects as pseudo-words and then compose them with the given text. However, the inherent entangled influence scope of pseudo-words with the given text results in a dual-optimum paradox, i.e., the similarity of the given subjects and the controllability of the given text could not be optimal simultaneously. We present RealCustom that, for the first time, disentangles similarity from controllability by precisely limiting subject influence to relevant parts only, achieved by gradually narrowing real text word from its general connotation to the specific subject and using its cross-attention to distinguish relevance. Specifically, RealCustom introduces a novel "train-inference" decoupled framework: (1) during training, RealCustom learns general alignment between visual conditions to original textual conditions by a novel adaptive scoring module to adaptively modulate influence quantity; (2) during inference, a novel adaptive mask guidance strategy is proposed to iteratively update the influence scope and influence quantity of the given subjects to gradually narrow the generation of the real text word. Comprehensive experiments demonstrate the superior real-time customization ability of RealCustom in the open domain, achieving both unprecedented similarity of the given subjects and controllability of the given text for the first time. The project page is https://corleone-huang.github.io/realcustom/.
Esports Training, Periodization, and Software -- a Scoping Review
Electronic sports (esports) and research on this emerging field are interdisciplinary in nature. By extension, it is essential to understand how to standardize and structure training with the help of existing tools developed by years of research in sports sciences and informatics. Our goal in this article was to verify if the current body of research contains substantial evidence of the training systems applied to training esports players. To verify the existing sources, we have applied a framework of scoping review to address the search from multiple scientific databases with further local processing. We conclude that the current research on esports dealt mainly with describing and modeling performance metrics spanned over multiple fragmented research areas (psychology, nutrition, informatics), and yet these building blocks were not assembled into an existing well-functioning theory of performance in esports by providing exercise regimes, and ways of periodization for esports.
Implicit meta-learning may lead language models to trust more reliable sources
We demonstrate that LLMs may learn indicators of document usefulness and modulate their updates accordingly. We introduce random strings ("tags") as indicators of usefulness in a synthetic fine-tuning dataset. Fine-tuning on this dataset leads to implicit meta-learning (IML): in further fine-tuning, the model updates to make more use of text that is tagged as useful. We perform a thorough empirical investigation of this phenomenon, finding (among other things) that (i) it occurs in both pretrained LLMs and those trained from scratch, as well as on a vision task, and (ii) larger models and smaller batch sizes tend to give more IML. We also use probing to examine how IML changes the way models store knowledge in their parameters. Finally, we reflect on what our results might imply about capabilities, risks, and controllability of future AI systems. Our code can be found at https://github.com/krasheninnikov/internalization.
On Teacher Hacking in Language Model Distillation
Post-training of language models (LMs) increasingly relies on the following two stages: (i) knowledge distillation, where the LM is trained to imitate a larger teacher LM, and (ii) reinforcement learning from human feedback (RLHF), where the LM is aligned by optimizing a reward model. In the second RLHF stage, a well-known challenge is reward hacking, where the LM over-optimizes the reward model. Such phenomenon is in line with Goodhart's law and can lead to degraded performance on the true objective. In this paper, we investigate whether a similar phenomenon, that we call teacher hacking, can occur during knowledge distillation. This could arise because the teacher LM is itself an imperfect approximation of the true distribution. To study this, we propose a controlled experimental setup involving: (i) an oracle LM representing the ground-truth distribution, (ii) a teacher LM distilled from the oracle, and (iii) a student LM distilled from the teacher. Our experiments reveal the following insights. When using a fixed offline dataset for distillation, teacher hacking occurs; moreover, we can detect it by observing when the optimization process deviates from polynomial convergence laws. In contrast, employing online data generation techniques effectively mitigates teacher hacking. More precisely, we identify data diversity as the key factor in preventing hacking. Overall, our findings provide a deeper understanding of the benefits and limitations of distillation for building robust and efficient LMs.
Unfamiliar Finetuning Examples Control How Language Models Hallucinate
Large language models (LLMs) have a tendency to generate plausible-sounding yet factually incorrect responses, especially when queried on unfamiliar concepts. In this work, we explore the underlying mechanisms that govern how finetuned LLMs hallucinate. Our investigation reveals an interesting pattern: as inputs become more unfamiliar, LLM outputs tend to default towards a ``hedged'' prediction, whose form is determined by how the unfamiliar examples in the finetuning data are supervised. Thus, by strategically modifying these examples' supervision, we can control LLM predictions for unfamiliar inputs (e.g., teach them to say ``I don't know''). Based on these principles, we develop an RL approach that more reliably mitigates hallucinations for long-form generation tasks, by tackling the challenges presented by reward model hallucinations. We validate our findings with a series of controlled experiments in multiple-choice QA on MMLU, as well as long-form biography and book/movie plot generation tasks.
Uni-O4: Unifying Online and Offline Deep Reinforcement Learning with Multi-Step On-Policy Optimization
Combining offline and online reinforcement learning (RL) is crucial for efficient and safe learning. However, previous approaches treat offline and online learning as separate procedures, resulting in redundant designs and limited performance. We ask: Can we achieve straightforward yet effective offline and online learning without introducing extra conservatism or regularization? In this study, we propose Uni-o4, which utilizes an on-policy objective for both offline and online learning. Owning to the alignment of objectives in two phases, the RL agent can transfer between offline and online learning seamlessly. This property enhances the flexibility of the learning paradigm, allowing for arbitrary combinations of pretraining, fine-tuning, offline, and online learning. In the offline phase, specifically, Uni-o4 leverages diverse ensemble policies to address the mismatch issues between the estimated behavior policy and the offline dataset. Through a simple offline policy evaluation (OPE) approach, Uni-o4 can achieve multi-step policy improvement safely. We demonstrate that by employing the method above, the fusion of these two paradigms can yield superior offline initialization as well as stable and rapid online fine-tuning capabilities. Through real-world robot tasks, we highlight the benefits of this paradigm for rapid deployment in challenging, previously unseen real-world environments. Additionally, through comprehensive evaluations using numerous simulated benchmarks, we substantiate that our method achieves state-of-the-art performance in both offline and offline-to-online fine-tuning learning. Our website: https://lei-kun.github.io/uni-o4/ .
Verbalized Sampling: How to Mitigate Mode Collapse and Unlock LLM Diversity
Post-training alignment often reduces LLM diversity, leading to a phenomenon known as mode collapse. Unlike prior work that attributes this effect to algorithmic limitations, we identify a fundamental, pervasive data-level driver: typicality bias in preference data, whereby annotators systematically favor familiar text as a result of well-established findings in cognitive psychology. We formalize this bias theoretically, verify it on preference datasets empirically, and show that it plays a central role in mode collapse. Motivated by this analysis, we introduce Verbalized Sampling, a simple, training-free prompting strategy to circumvent mode collapse. VS prompts the model to verbalize a probability distribution over a set of responses (e.g., ``Generate 5 jokes about coffee and their corresponding probabilities''). Comprehensive experiments show that VS significantly improves performance across creative writing (poems, stories, jokes), dialogue simulation, open-ended QA, and synthetic data generation, without sacrificing factual accuracy and safety. For instance, in creative writing, VS increases diversity by 1.6-2.1x over direct prompting. We further observe an emergent trend that more capable models benefit more from VS. In sum, our work provides a new data-centric perspective on mode collapse and a practical inference-time remedy that helps unlock pre-trained generative diversity.
Interactive Learning from Policy-Dependent Human Feedback
This paper investigates the problem of interactively learning behaviors communicated by a human teacher using positive and negative feedback. Much previous work on this problem has made the assumption that people provide feedback for decisions that is dependent on the behavior they are teaching and is independent from the learner's current policy. We present empirical results that show this assumption to be false -- whether human trainers give a positive or negative feedback for a decision is influenced by the learner's current policy. Based on this insight, we introduce {\em Convergent Actor-Critic by Humans} (COACH), an algorithm for learning from policy-dependent feedback that converges to a local optimum. Finally, we demonstrate that COACH can successfully learn multiple behaviors on a physical robot.
LLM Unlearning Should Be Form-Independent
Large Language Model (LLM) unlearning aims to erase or suppress undesirable knowledge within the model, offering promise for controlling harmful or private information to prevent misuse. However, recent studies highlight its limited efficacy in real-world scenarios, hindering practical adoption. In this study, we identify a pervasive issue underlying many downstream failures: the effectiveness of existing unlearning methods heavily depends on the form of training samples and frequently fails to generalize to alternate expressions of the same knowledge. We formally characterize this problem as Form-Dependent Bias and systematically investigate its specific manifestation patterns across various downstream tasks. To quantify its prevalence and support future research, we introduce ORT, a novel benchmark designed to evaluate the robustness of unlearning methods against variations in knowledge expression. Results reveal that Form-Dependent Bias is both widespread and severe among current techniques. We argue that LLM unlearning should be form-independent to address the endless forms of downstream tasks encountered in real-world security-critical scenarios. Towards this goal, we introduce Rank-one Concept Redirection (ROCR), a novel training-free method, as a promising solution path. ROCR performs unlearning by targeting the invariants in downstream tasks, specifically the activated dangerous concepts. It is capable of modifying model parameters within seconds to redirect the model's perception of a specific unlearning target concept to another harmless concept. Extensive experiments demonstrate that ROCR significantly improves unlearning effectiveness compared to traditional methods while generating highly natural outputs.
Pretrained AI Models: Performativity, Mobility, and Change
The paradigm of pretrained deep learning models has recently emerged in artificial intelligence practice, allowing deployment in numerous societal settings with limited computational resources, but also embedding biases and enabling unintended negative uses. In this paper, we treat pretrained models as objects of study and discuss the ethical impacts of their sociological position. We discuss how pretrained models are developed and compared under the common task framework, but that this may make self-regulation inadequate. Further how pretrained models may have a performative effect on society that exacerbates biases. We then discuss how pretrained models move through actor networks as a kind of computationally immutable mobile, but that users also act as agents of technological change by reinterpreting them via fine-tuning and transfer. We further discuss how users may use pretrained models in malicious ways, drawing a novel connection between the responsible innovation and user-centered innovation literatures. We close by discussing how this sociological understanding of pretrained models can inform AI governance frameworks for fairness, accountability, and transparency.
Solving math word problems with process- and outcome-based feedback
Recent work has shown that asking language models to generate reasoning steps improves performance on many reasoning tasks. When moving beyond prompting, this raises the question of how we should supervise such models: outcome-based approaches which supervise the final result, or process-based approaches which supervise the reasoning process itself? Differences between these approaches might naturally be expected not just in final-answer errors but also in reasoning errors, which can be difficult to detect and are problematic in many real-world domains such as education. We run the first comprehensive comparison between process- and outcome-based approaches trained on a natural language task, GSM8K. We find that pure outcome-based supervision produces similar final-answer error rates with less label supervision. However, for correct reasoning steps we find it necessary to use process-based supervision or supervision from learned reward models that emulate process-based feedback. In total, we improve the previous best results from 16.8% to 12.7% final-answer error and 14.0% to 3.4% reasoning error among final-answer-correct solutions.
Playpen: An Environment for Exploring Learning Through Conversational Interaction
Interaction between learner and feedback-giver has come into focus recently for post-training of Large Language Models (LLMs), through the use of reward models that judge the appropriateness of a model's response. In this paper, we investigate whether Dialogue Games -- goal-directed and rule-governed activities driven predominantly by verbal actions -- can also serve as a source of feedback signals for learning. We introduce Playpen, an environment for off- and online learning through Dialogue Game self-play, and investigate a representative set of post-training methods: supervised fine-tuning; direct alignment (DPO); and reinforcement learning with GRPO. We experiment with post-training a small LLM (Llama-3.1-8B-Instruct), evaluating performance on unseen instances of training games as well as unseen games, and on standard benchmarks. We find that imitation learning through SFT improves performance on unseen instances, but negatively impacts other skills, while interactive learning with GRPO shows balanced improvements without loss of skills. We release the framework and the baseline training setups to foster research in the promising new direction of learning in (synthetic) interaction.

 
			 
			 
			 
			 
			 
			 
	 
			 
			 
			 
			 
			 
			 
			 
	 
			 
			 
			 
			 
			 
			 
			 
	 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
	 
			 
			 
			 
			 
			 
			 
	 
			 
			 
			 
			 
	 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
	 
			 
	 
			 
			 
			 
			 
			 
			 
			 
	 
			 
			 
			 
			 
			 
			 
	 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
	