ner_bert_model / README.md
pardrib1998's picture
End of training
7aa1fec verified
metadata
library_name: transformers
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_trainer
datasets:
  - lener_br
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: ner_bert_model
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: lener_br
          type: lener_br
          config: lener_br
          split: test
          args: lener_br
        metrics:
          - name: Precision
            type: precision
            value: 0.828094932649134
          - name: Recall
            type: recall
            value: 0.8532716457369465
          - name: F1
            type: f1
            value: 0.8404947916666666
          - name: Accuracy
            type: accuracy
            value: 0.9840912469998513

ner_bert_model

This model is a fine-tuned version of distilbert-base-uncased on the lener_br dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0922
  • Precision: 0.8281
  • Recall: 0.8533
  • F1: 0.8405
  • Accuracy: 0.9841

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 490 0.0971 0.6373 0.7607 0.6936 0.9706
0.2449 2.0 980 0.0820 0.6916 0.8063 0.7446 0.9760
0.0634 3.0 1470 0.0750 0.7106 0.8473 0.7730 0.9778
0.0352 4.0 1960 0.0707 0.7690 0.8361 0.8011 0.9799
0.0226 5.0 2450 0.0812 0.8063 0.8394 0.8225 0.9821
0.0157 6.0 2940 0.0779 0.7931 0.8486 0.8199 0.9826
0.0105 7.0 3430 0.0958 0.7314 0.8586 0.7899 0.9779
0.0082 8.0 3920 0.0810 0.8158 0.8460 0.8306 0.9829
0.0067 9.0 4410 0.0830 0.8190 0.8526 0.8355 0.9832
0.0054 10.0 4900 0.0810 0.8165 0.8500 0.8329 0.9833
0.0051 11.0 5390 0.0855 0.8180 0.8493 0.8333 0.9832
0.0037 12.0 5880 0.0862 0.8195 0.8519 0.8354 0.9841
0.0034 13.0 6370 0.0867 0.8165 0.8586 0.8370 0.9833
0.0027 14.0 6860 0.0922 0.8214 0.8420 0.8316 0.9832
0.0024 15.0 7350 0.0910 0.8147 0.8486 0.8313 0.9836
0.002 16.0 7840 0.0928 0.8191 0.8559 0.8371 0.9840
0.0018 17.0 8330 0.0928 0.8119 0.8559 0.8333 0.9834
0.0017 18.0 8820 0.0920 0.8228 0.8592 0.8406 0.9838
0.0015 19.0 9310 0.0919 0.8242 0.8553 0.8394 0.9837
0.0011 20.0 9800 0.0922 0.8281 0.8533 0.8405 0.9841

Framework versions

  • Transformers 4.52.4
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.1