Model Card: MT564-Gemma-LoRA
This model is a fine-tuned version of google/gemma-3-1b-it
designed to analyze SWIFT MT564 corporate action messages and flag potential structural or compliance-related anomalies. It supports extracting sequences, identifying missing fields, and detecting risky patterns such as incorrect codes, unusual currencies, or sanctioned countries.
Model Details
Model Description
- Developer: Paresh Mishra
- Model Type: Causal Language Model (Instruction-tuned)
- Language(s): English, Financial NLP
- Base Model:
google/gemma-2b-it
- Fine-tuning: PEFT / LoRA (r=16, alpha=32, dropout=0.05)
- Framework: Hugging Face Transformers
Sources
- Model Repo: https://huggingface.co/pareshmishra/mt564-gemma-lora
- Dataset: Custom-crafted
.jsonl
from MT564 structure, PDF guidelines, and synthetic variations
Uses
Direct Use
- Identify anomalies in SWIFT MT564 messages
- Understand sequences (GENL, CAOPTN, etc.)
- Verify country/currency codes for compliance
- Detect missing mandatory fields or wrong order
Downstream Use
- Can be integrated into:
- Compliance tools
- Audit automation platforms
- Financial reporting systems
Out-of-Scope Use
- General-purpose chat
- Legal or regulatory interpretation without human oversight
Bias, Risks, and Limitations
This model:
- May not generalize beyond SWIFT MT564 unless retrained.
- May hallucinate anomalies when fields are non-standard but valid.
- Should not be used in production without human validation.
Recommendations
- Always cross-validate flagged anomalies with domain experts.
- Extend dataset with more ISO20022-compliant and real-world examples.
How to Use
from transformers import AutoTokenizer, AutoModelForCausalLM
model_id = "pareshmishra/mt564-gemma-lora"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
prompt = """### Instruction:
Analyze this MT564 message for anomalies
### Input:
{1:F01TESTBANKXXXX0000000000}{2:I564CLIENTBANKXXXXN}{4:
:16R:GENL
:20C::CORP//CA20250501
:23G:NEWM
:22F::CAEV//DVCA
:16S:GENL
:16R:CAOPTN
:13A::CAON//001
:36B::ENTL//UNIT/5000000
:19A::SETT//ZAR/5000000
:95Q::RCPT//KP
:16S:CAOPTN
}
### Response:"""
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=512)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Training Details
Training Data
80+ high-quality JSONL records crafted from:
ISO20022 documentation
swift_ISO20022.pdf
Simulated MT564 edge cases
Format: "text": "### Instruction:\n...\n### Input:\n...\n### Response:\n..."
Training Hyperparameters
Parameter Value
Epochs 3
Batch Size 2
Gradient Accum 4
Learning Rate 3e-5
LoRA r 16
LoRA Alpha 32
Dropout 0.05
Max Length 2048
Quantization int4
Precision fp16
Hardware
Environment: Google Colab
GPU: T4
Training Time: ~12 mins
Evaluation
Metrics
Manual evaluation using expected vs. actual anomaly detection
Correctly flagged missing sequences and invalid codes
Environmental Impact
Hardware Type: Google Colab T4
Hours used: ~0.2
Cloud Provider: Google
Carbon Estimate: ~0.02 kgCO₂e (via MLCO2 calculator)
Citation
latex
@misc{mt564gemma,
title={MT564-Gemma-LoRA},
author={Paresh Mishra},
year={2025},
howpublished={\url{https://huggingface.co/pareshmishra/mt564-gemma-lora}},
}
Contact
GitHub: @pareshmishra
Hugging Face: pareshmishra
Model tree for pareshmishra/mt564-gemma-lora
Base model
google/gemma-2b-it