|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: openai/whisper-tiny |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: throatmic_subvocalization_whisper_tiny |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# throatmic_subvocalization_whisper_tiny |
|
|
|
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.3807 |
|
- Wer: 0.6449 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-06 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 50 |
|
- training_steps: 800 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-------:|:----:|:---------------:|:------:| |
|
| 7.2094 | 0.4464 | 25 | 5.9584 | 1.7658 | |
|
| 4.7209 | 0.8929 | 50 | 3.3913 | 1.1397 | |
|
| 2.5229 | 1.3393 | 75 | 2.1995 | 0.9069 | |
|
| 1.8454 | 1.7857 | 100 | 1.8676 | 0.8454 | |
|
| 1.6015 | 2.2321 | 125 | 1.7199 | 0.7794 | |
|
| 1.3786 | 2.6786 | 150 | 1.6296 | 0.7574 | |
|
| 1.2147 | 3.125 | 175 | 1.5654 | 0.7432 | |
|
| 1.0976 | 3.5714 | 200 | 1.5200 | 0.7135 | |
|
| 1.0156 | 4.0179 | 225 | 1.4829 | 0.6759 | |
|
| 0.8611 | 4.4643 | 250 | 1.4689 | 0.7050 | |
|
| 0.8818 | 4.9107 | 275 | 1.4394 | 0.6585 | |
|
| 0.7822 | 5.3571 | 300 | 1.4273 | 0.6669 | |
|
| 0.6969 | 5.8036 | 325 | 1.4159 | 0.6481 | |
|
| 0.7037 | 6.25 | 350 | 1.4057 | 0.6533 | |
|
| 0.6555 | 6.6964 | 375 | 1.3991 | 0.6475 | |
|
| 0.5759 | 7.1429 | 400 | 1.3927 | 0.6546 | |
|
| 0.5217 | 7.5893 | 425 | 1.3936 | 0.6397 | |
|
| 0.5731 | 8.0357 | 450 | 1.3849 | 0.6436 | |
|
| 0.4753 | 8.4821 | 475 | 1.3839 | 0.6345 | |
|
| 0.4799 | 8.9286 | 500 | 1.3816 | 0.6546 | |
|
| 0.4369 | 9.375 | 525 | 1.3824 | 0.6429 | |
|
| 0.4424 | 9.8214 | 550 | 1.3828 | 0.6404 | |
|
| 0.4206 | 10.2679 | 575 | 1.3888 | 0.6371 | |
|
| 0.3735 | 10.7143 | 600 | 1.3807 | 0.6449 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.49.0 |
|
- Pytorch 2.6.0+cu124 |
|
- Datasets 3.3.2 |
|
- Tokenizers 0.21.0 |
|
|