tf_bert-finetuned-ner
This model is a fine-tuned version of bert-base-cased on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.0272
 - Validation Loss: 0.0522
 - Epoch: 2
 
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2631, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
 - training_precision: mixed_float16
 
Training results
| Train Loss | Validation Loss | Epoch | 
|---|---|---|
| 0.1727 | 0.0673 | 0 | 
| 0.0462 | 0.0541 | 1 | 
| 0.0272 | 0.0522 | 2 | 
Framework versions
- Transformers 4.16.0
 - TensorFlow 2.7.0
 - Datasets 1.18.1
 - Tokenizers 0.11.0
 
- Downloads last month
 - -