DiffuBERTa: JSON Extraction Adapter
This model is a Fine-tuned version of answerdotai/ModernBERT-base using LoRA. It is designed to extract structured JSON data from unstructured text using a parallel decoding approach.
Model Performance
- Final Training Loss: 4.7773
- Final Evaluation Loss: 4.316555023193359
- Training Epochs: 5
- Date Trained: 2025-11-28
π Live Demo Output
(Generated automatically after training)
Input Text:
"We are excited to welcome Dr. Sarah to our Paris office as Senior Data Scientist."
Template:
{'name': '[1]', 'job': '[2]', 'city': '[1]'}
Model Output:
{
"name": "Sarah",
"job": "Data scientist",
"city": "Paris"
}
Usage
from transformers import AutoModelForMaskedLM, AutoTokenizer
from peft import PeftModel
base_model = AutoModelForMaskedLM.from_pretrained("answerdotai/ModernBERT-base")
model = PeftModel.from_pretrained(base_model, "philipp-zettl/DiffuBERTa")
# ... use extract_parallel helper ...
- Downloads last month
- 172
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
π
Ask for provider support