SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("philipp-zettl/MiniLM-similarity-small")
# Run inference
sentences = [
'Envoyez-moi la politique de garantie de ce produit',
'faq query',
'account query',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
MiniLM-dev - Evaluated with
EmbeddingSimilarityEvaluator
| Metric | Value |
|---|---|
| pearson_cosine | 0.6538 |
| spearman_cosine | 0.6337 |
| pearson_manhattan | 0.58 |
| spearman_manhattan | 0.5526 |
| pearson_euclidean | 0.5732 |
| spearman_euclidean | 0.5395 |
| pearson_dot | 0.636 |
| spearman_dot | 0.6238 |
| pearson_max | 0.6538 |
| spearman_max | 0.6337 |
Semantic Similarity
- Dataset:
MiniLM-test - Evaluated with
EmbeddingSimilarityEvaluator
| Metric | Value |
|---|---|
| pearson_cosine | 0.6682 |
| spearman_cosine | 0.6222 |
| pearson_manhattan | 0.5715 |
| spearman_manhattan | 0.5481 |
| pearson_euclidean | 0.5727 |
| spearman_euclidean | 0.5493 |
| pearson_dot | 0.6396 |
| spearman_dot | 0.6107 |
| pearson_max | 0.6682 |
| spearman_max | 0.6222 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 1,267 training samples
- Columns:
sentence1,sentence2, andscore - Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 6 tokens
- mean: 10.77 tokens
- max: 18 tokens
- min: 4 tokens
- mean: 5.31 tokens
- max: 6 tokens
- min: 0.0
- mean: 0.67
- max: 1.0
- Samples:
sentence1 sentence2 score Get information on the next art exhibitionproduct query0.0Show me how to update my profileproduct query0.0Покажите мне доступные варианты полетов в Турциюfaq query0.0 - Loss:
CoSENTLosswith these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 159 evaluation samples
- Columns:
sentence1,sentence2, andscore - Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 6 tokens
- mean: 10.65 tokens
- max: 17 tokens
- min: 4 tokens
- mean: 5.35 tokens
- max: 6 tokens
- min: 0.0
- mean: 0.67
- max: 1.0
- Samples:
sentence1 sentence2 score Sende mir die Bestellbestätigung per E-Mailorder query0.0How do I add a new payment method?faq query1.0No puedo conectar mi impresora, ¿puedes ayudarme?support query1.0 - Loss:
CoSENTLosswith these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepslearning_rate: 2e-05num_train_epochs: 2warmup_ratio: 0.1fp16: Truebatch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 8per_device_eval_batch_size: 8per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 2max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falsebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | loss | MiniLM-dev_spearman_cosine | MiniLM-test_spearman_cosine |
|---|---|---|---|---|---|
| 0.0629 | 10 | 6.2479 | 2.5890 | 0.1448 | - |
| 0.1258 | 20 | 4.3549 | 2.2787 | 0.1965 | - |
| 0.1887 | 30 | 3.5969 | 2.0104 | 0.2599 | - |
| 0.2516 | 40 | 2.4979 | 1.7269 | 0.3357 | - |
| 0.3145 | 50 | 2.5551 | 1.5747 | 0.4439 | - |
| 0.3774 | 60 | 3.1446 | 1.4892 | 0.4750 | - |
| 0.4403 | 70 | 2.1353 | 1.5305 | 0.4662 | - |
| 0.5031 | 80 | 2.9341 | 1.3718 | 0.4848 | - |
| 0.5660 | 90 | 2.8709 | 1.2469 | 0.5316 | - |
| 0.6289 | 100 | 2.1367 | 1.2558 | 0.5436 | - |
| 0.6918 | 110 | 2.2735 | 1.2939 | 0.5392 | - |
| 0.7547 | 120 | 2.8646 | 1.1206 | 0.5616 | - |
| 0.8176 | 130 | 3.3204 | 1.0213 | 0.5662 | - |
| 0.8805 | 140 | 0.8989 | 0.9866 | 0.5738 | - |
| 0.9434 | 150 | 0.0057 | 0.9961 | 0.5674 | - |
| 1.0063 | 160 | 0.0019 | 1.0111 | 0.5674 | - |
| 1.0692 | 170 | 0.4617 | 1.0275 | 0.5747 | - |
| 1.1321 | 180 | 0.0083 | 1.0746 | 0.5732 | - |
| 1.1950 | 190 | 0.5048 | 1.0968 | 0.5753 | - |
| 1.2579 | 200 | 0.0002 | 1.0840 | 0.5738 | - |
| 1.3208 | 210 | 0.07 | 1.0364 | 0.5753 | - |
| 1.3836 | 220 | 0.0 | 0.9952 | 0.5750 | - |
| 1.4465 | 230 | 0.0 | 0.9922 | 0.5744 | - |
| 1.5094 | 240 | 0.0 | 0.9923 | 0.5726 | - |
| 1.0126 | 250 | 0.229 | 0.9930 | 0.5729 | - |
| 1.0755 | 260 | 2.2061 | 0.9435 | 0.5880 | - |
| 1.1384 | 270 | 2.7711 | 0.8892 | 0.6078 | - |
| 1.2013 | 280 | 0.7528 | 0.8886 | 0.6148 | - |
| 1.2642 | 290 | 0.386 | 0.8927 | 0.6162 | - |
| 1.3270 | 300 | 0.8902 | 0.8710 | 0.6267 | - |
| 1.3899 | 310 | 0.9534 | 0.8429 | 0.6337 | - |
| 1.4403 | 318 | - | - | - | 0.6222 |
Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.1+cu121
- Accelerate: 0.33.0
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}
- Downloads last month
- 2
Model tree for philipp-zettl/MiniLM-similarity-small
Evaluation results
- Pearson Cosine on MiniLM devself-reported0.654
- Spearman Cosine on MiniLM devself-reported0.634
- Pearson Manhattan on MiniLM devself-reported0.580
- Spearman Manhattan on MiniLM devself-reported0.553
- Pearson Euclidean on MiniLM devself-reported0.573
- Spearman Euclidean on MiniLM devself-reported0.539
- Pearson Dot on MiniLM devself-reported0.636
- Spearman Dot on MiniLM devself-reported0.624
- Pearson Max on MiniLM devself-reported0.654
- Spearman Max on MiniLM devself-reported0.634