metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:124788
- loss:GISTEmbedLoss
base_model: BAAI/bge-small-en-v1.5
widget:
- source_sentence: 其他机械、设备和有形货物租赁服务代表
sentences:
- 其他机械和设备租赁服务工作人员
- 电子和电信设备及零部件物流经理
- 工业主厨
- source_sentence: 公交车司机
sentences:
- 表演灯光设计师
- 乙烯基地板安装工
- 国际巴士司机
- source_sentence: online communication manager
sentences:
- trades union official
- social media manager
- budget manager
- source_sentence: Projektmanagerin
sentences:
- Projektmanager/Projektmanagerin
- Category-Manager
- Infanterist
- source_sentence: Volksvertreter
sentences:
- Parlamentarier
- Oberbürgermeister
- Konsul
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@20
- cosine_accuracy@50
- cosine_accuracy@100
- cosine_accuracy@150
- cosine_accuracy@200
- cosine_precision@1
- cosine_precision@20
- cosine_precision@50
- cosine_precision@100
- cosine_precision@150
- cosine_precision@200
- cosine_recall@1
- cosine_recall@20
- cosine_recall@50
- cosine_recall@100
- cosine_recall@150
- cosine_recall@200
- cosine_ndcg@1
- cosine_ndcg@20
- cosine_ndcg@50
- cosine_ndcg@100
- cosine_ndcg@150
- cosine_ndcg@200
- cosine_mrr@1
- cosine_mrr@20
- cosine_mrr@50
- cosine_mrr@100
- cosine_mrr@150
- cosine_mrr@200
- cosine_map@1
- cosine_map@20
- cosine_map@50
- cosine_map@100
- cosine_map@150
- cosine_map@200
- cosine_map@500
model-index:
- name: SentenceTransformer based on BAAI/bge-small-en-v1.5
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: full en
type: full_en
metrics:
- type: cosine_accuracy@1
value: 0.6571428571428571
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 0.9904761904761905
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 0.9904761904761905
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 0.9904761904761905
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 0.9904761904761905
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 0.9904761904761905
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.6571428571428571
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.5023809523809524
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.30800000000000005
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.18628571428571428
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.1321904761904762
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.10295238095238096
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.0680237860830842
name: Cosine Recall@1
- type: cosine_recall@20
value: 0.5384852963395483
name: Cosine Recall@20
- type: cosine_recall@50
value: 0.7260449077992874
name: Cosine Recall@50
- type: cosine_recall@100
value: 0.8328530702930984
name: Cosine Recall@100
- type: cosine_recall@150
value: 0.8745262490032277
name: Cosine Recall@150
- type: cosine_recall@200
value: 0.9056960100263424
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.6571428571428571
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.6845256340390302
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.7040452093638513
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.758935932285001
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.7774414598948007
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.7892946240668293
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.6571428571428571
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.8103174603174604
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.8103174603174604
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.8103174603174604
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.8103174603174604
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.8103174603174604
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.6571428571428571
name: Cosine Map@1
- type: cosine_map@20
value: 0.5418235787800474
name: Cosine Map@20
- type: cosine_map@50
value: 0.5327215779103721
name: Cosine Map@50
- type: cosine_map@100
value: 0.565706253334091
name: Cosine Map@100
- type: cosine_map@150
value: 0.5733951147399983
name: Cosine Map@150
- type: cosine_map@200
value: 0.5771587776237981
name: Cosine Map@200
- type: cosine_map@500
value: 0.5813892452974444
name: Cosine Map@500
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: full es
type: full_es
metrics:
- type: cosine_accuracy@1
value: 0.12432432432432433
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 1
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 1
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 1
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 1
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 1
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.12432432432432433
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.4897297297297297
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.31794594594594594
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.19864864864864865
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.14688288288288287
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.11789189189189188
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.003111544931768446
name: Cosine Recall@1
- type: cosine_recall@20
value: 0.32208664960961075
name: Cosine Recall@20
- type: cosine_recall@50
value: 0.46383117404893587
name: Cosine Recall@50
- type: cosine_recall@100
value: 0.5437537828683688
name: Cosine Recall@100
- type: cosine_recall@150
value: 0.5824968655076911
name: Cosine Recall@150
- type: cosine_recall@200
value: 0.6146962508233631
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.12432432432432433
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.5384577730264963
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.5012455261232941
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.5147486871284331
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.5348194013794069
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.5505397598095297
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.12432432432432433
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.5515015015015016
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.5515015015015016
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.5515015015015016
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.5515015015015016
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.5515015015015016
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.12432432432432433
name: Cosine Map@1
- type: cosine_map@20
value: 0.40280623036556984
name: Cosine Map@20
- type: cosine_map@50
value: 0.3421710529569103
name: Cosine Map@50
- type: cosine_map@100
value: 0.33947884152876345
name: Cosine Map@100
- type: cosine_map@150
value: 0.34777364049184706
name: Cosine Map@150
- type: cosine_map@200
value: 0.35339765423089375
name: Cosine Map@200
- type: cosine_map@500
value: 0.3631043007370563
name: Cosine Map@500
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: full de
type: full_de
metrics:
- type: cosine_accuracy@1
value: 0.2955665024630542
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 0.9211822660098522
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 0.9655172413793104
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 0.9753694581280788
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 0.9852216748768473
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 0.9852216748768473
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.2955665024630542
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.4246305418719211
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.2813793103448276
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.1800985221674877
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.1362233169129721
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.11054187192118226
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.01108543831680986
name: Cosine Recall@1
- type: cosine_recall@20
value: 0.26139377973111655
name: Cosine Recall@20
- type: cosine_recall@50
value: 0.3835171819041212
name: Cosine Recall@50
- type: cosine_recall@100
value: 0.4676892706124872
name: Cosine Recall@100
- type: cosine_recall@150
value: 0.5183014504752351
name: Cosine Recall@150
- type: cosine_recall@200
value: 0.551717511250073
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.2955665024630542
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.4600580109269636
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.4229190542750304
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.4370543021366767
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.46289045418097646
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.4796711024513544
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.2955665024630542
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.48958320005117995
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.49093477998292195
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.4910841931964832
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.4911623560854821
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.4911623560854821
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.2955665024630542
name: Cosine Map@1
- type: cosine_map@20
value: 0.32364842421740225
name: Cosine Map@20
- type: cosine_map@50
value: 0.2643813390551392
name: Cosine Map@50
- type: cosine_map@100
value: 0.2576413544507463
name: Cosine Map@100
- type: cosine_map@150
value: 0.2669126239698539
name: Cosine Map@150
- type: cosine_map@200
value: 0.27215799504041416
name: Cosine Map@200
- type: cosine_map@500
value: 0.28329484592874316
name: Cosine Map@500
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: full zh
type: full_zh
metrics:
- type: cosine_accuracy@1
value: 0.34951456310679613
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 0.7378640776699029
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 0.8252427184466019
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 0.8543689320388349
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 0.9029126213592233
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 0.941747572815534
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.34951456310679613
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.17330097087378643
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.09436893203883494
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.05893203883495146
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.0458252427184466
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.03854368932038834
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.02726635297033844
name: Cosine Recall@1
- type: cosine_recall@20
value: 0.17661061398990294
name: Cosine Recall@20
- type: cosine_recall@50
value: 0.2392861843604663
name: Cosine Recall@50
- type: cosine_recall@100
value: 0.2862639658547104
name: Cosine Recall@100
- type: cosine_recall@150
value: 0.3286954340443375
name: Cosine Recall@150
- type: cosine_recall@200
value: 0.3630829587412431
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.34951456310679613
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.24683538489164747
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.23936442282824424
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.2618891246293786
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.27867525817923894
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.29190260238165355
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.34951456310679613
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.44845699819699636
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.4514515915598798
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.451864194979824
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.4522894025156287
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.45250948321580986
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.34951456310679613
name: Cosine Map@1
- type: cosine_map@20
value: 0.1470309927546457
name: Cosine Map@20
- type: cosine_map@50
value: 0.12671489844037503
name: Cosine Map@50
- type: cosine_map@100
value: 0.13257859039926595
name: Cosine Map@100
- type: cosine_map@150
value: 0.13523273342027425
name: Cosine Map@150
- type: cosine_map@200
value: 0.13679857663871084
name: Cosine Map@200
- type: cosine_map@500
value: 0.14069476480399515
name: Cosine Map@500
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: mix es
type: mix_es
metrics:
- type: cosine_accuracy@1
value: 0.41133645345813835
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 0.7613104524180967
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 0.8523140925637025
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 0.9121164846593863
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 0.9417576703068122
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 0.9547581903276131
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.41133645345813835
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.08920956838273532
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.04175767030681228
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.02291731669266771
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.015905702894782457
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.012243889755590227
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.15653988064284477
name: Cosine Recall@1
- type: cosine_recall@20
value: 0.6593678032835598
name: Cosine Recall@20
- type: cosine_recall@50
value: 0.7704838669737266
name: Cosine Recall@50
- type: cosine_recall@100
value: 0.847169601069757
name: Cosine Recall@100
- type: cosine_recall@150
value: 0.8825483495530297
name: Cosine Recall@150
- type: cosine_recall@200
value: 0.9050999182824455
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.41133645345813835
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.5116672519515115
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.542000920569141
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.558759964344595
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.5655977162199296
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.5697289878952349
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.41133645345813835
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.4978677179556957
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.5009543893008301
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.5018183607581652
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.5020589846475842
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.5021321446410069
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.41133645345813835
name: Cosine Map@1
- type: cosine_map@20
value: 0.4263681424556441
name: Cosine Map@20
- type: cosine_map@50
value: 0.4338209025376249
name: Cosine Map@50
- type: cosine_map@100
value: 0.4359939776007631
name: Cosine Map@100
- type: cosine_map@150
value: 0.43656970643226983
name: Cosine Map@150
- type: cosine_map@200
value: 0.4368426702726571
name: Cosine Map@200
- type: cosine_map@500
value: 0.43729529920887905
name: Cosine Map@500
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: mix de
type: mix_de
metrics:
- type: cosine_accuracy@1
value: 0.29433177327093085
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 0.6500260010400416
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 0.7607904316172647
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 0.8507540301612064
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 0.889755590223609
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 0.9204368174726989
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.29433177327093085
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.07308892355694228
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.036141445657826315
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.020634425377015084
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.014681920610157736
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.011552262090483621
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.1109031027907783
name: Cosine Recall@1
- type: cosine_recall@20
value: 0.534356040908303
name: Cosine Recall@20
- type: cosine_recall@50
value: 0.6584676720402148
name: Cosine Recall@50
- type: cosine_recall@100
value: 0.752470098803952
name: Cosine Recall@100
- type: cosine_recall@150
value: 0.8025567689374241
name: Cosine Recall@150
- type: cosine_recall@200
value: 0.8417663373201595
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.29433177327093085
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.3919428679123834
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.425599899100406
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.4462421162922913
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.45606402272845137
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.4632312746623382
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.29433177327093085
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.37785395494554963
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.38148321196953044
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.38274724688611994
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.3830666241433367
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.3832429794087988
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.29433177327093085
name: Cosine Map@1
- type: cosine_map@20
value: 0.3096720133634083
name: Cosine Map@20
- type: cosine_map@50
value: 0.31740714963039135
name: Cosine Map@50
- type: cosine_map@100
value: 0.31992557448195186
name: Cosine Map@100
- type: cosine_map@150
value: 0.3207379270967634
name: Cosine Map@150
- type: cosine_map@200
value: 0.3211962807999124
name: Cosine Map@200
- type: cosine_map@500
value: 0.3219246841517722
name: Cosine Map@500
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: mix zh
type: mix_zh
metrics:
- type: cosine_accuracy@1
value: 0.09707724425887265
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 0.3585594989561587
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 0.4900835073068894
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 0.6002087682672234
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 0.6612734864300627
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 0.7061586638830898
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.09707724425887265
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.03144572025052192
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.018486430062630482
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.011612734864300627
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.008688239387613084
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.007132045929018789
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.032868575405109846
name: Cosine Recall@1
- type: cosine_recall@20
value: 0.20912118500845014
name: Cosine Recall@20
- type: cosine_recall@50
value: 0.305353414852371
name: Cosine Recall@50
- type: cosine_recall@100
value: 0.3834696126188819
name: Cosine Recall@100
- type: cosine_recall@150
value: 0.43087740663419155
name: Cosine Recall@150
- type: cosine_recall@200
value: 0.4714567385757365
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.09707724425887265
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.13847583254619214
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.16556220177827802
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.1834871578549362
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.1930615498205831
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.20074882110420836
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.09707724425887265
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.15220960831749397
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.15642354470896513
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.1580041495008456
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.15850022553236756
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.1587557913720219
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.09707724425887265
name: Cosine Map@1
- type: cosine_map@20
value: 0.08751052569766739
name: Cosine Map@20
- type: cosine_map@50
value: 0.09304075210745723
name: Cosine Map@50
- type: cosine_map@100
value: 0.09500635866296525
name: Cosine Map@100
- type: cosine_map@150
value: 0.09570276054684158
name: Cosine Map@150
- type: cosine_map@200
value: 0.09614394028730197
name: Cosine Map@200
- type: cosine_map@500
value: 0.09706713378133278
name: Cosine Map@500
Job - Job matching BAAI/bge-small-en-v1.5
Top performing model on TalentCLEF 2025 Task A. Use it for multilingual job title matching
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-small-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
- Training Datasets:
- full_en
- full_de
- full_es
- full_zh
- mix
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Volksvertreter',
'Parlamentarier',
'Oberbürgermeister',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Datasets:
full_en
,full_es
,full_de
,full_zh
,mix_es
,mix_de
andmix_zh
- Evaluated with
InformationRetrievalEvaluator
Metric | full_en | full_es | full_de | full_zh | mix_es | mix_de | mix_zh |
---|---|---|---|---|---|---|---|
cosine_accuracy@1 | 0.6571 | 0.1243 | 0.2956 | 0.3495 | 0.4113 | 0.2943 | 0.0971 |
cosine_accuracy@20 | 0.9905 | 1.0 | 0.9212 | 0.7379 | 0.7613 | 0.65 | 0.3586 |
cosine_accuracy@50 | 0.9905 | 1.0 | 0.9655 | 0.8252 | 0.8523 | 0.7608 | 0.4901 |
cosine_accuracy@100 | 0.9905 | 1.0 | 0.9754 | 0.8544 | 0.9121 | 0.8508 | 0.6002 |
cosine_accuracy@150 | 0.9905 | 1.0 | 0.9852 | 0.9029 | 0.9418 | 0.8898 | 0.6613 |
cosine_accuracy@200 | 0.9905 | 1.0 | 0.9852 | 0.9417 | 0.9548 | 0.9204 | 0.7062 |
cosine_precision@1 | 0.6571 | 0.1243 | 0.2956 | 0.3495 | 0.4113 | 0.2943 | 0.0971 |
cosine_precision@20 | 0.5024 | 0.4897 | 0.4246 | 0.1733 | 0.0892 | 0.0731 | 0.0314 |
cosine_precision@50 | 0.308 | 0.3179 | 0.2814 | 0.0944 | 0.0418 | 0.0361 | 0.0185 |
cosine_precision@100 | 0.1863 | 0.1986 | 0.1801 | 0.0589 | 0.0229 | 0.0206 | 0.0116 |
cosine_precision@150 | 0.1322 | 0.1469 | 0.1362 | 0.0458 | 0.0159 | 0.0147 | 0.0087 |
cosine_precision@200 | 0.103 | 0.1179 | 0.1105 | 0.0385 | 0.0122 | 0.0116 | 0.0071 |
cosine_recall@1 | 0.068 | 0.0031 | 0.0111 | 0.0273 | 0.1565 | 0.1109 | 0.0329 |
cosine_recall@20 | 0.5385 | 0.3221 | 0.2614 | 0.1766 | 0.6594 | 0.5344 | 0.2091 |
cosine_recall@50 | 0.726 | 0.4638 | 0.3835 | 0.2393 | 0.7705 | 0.6585 | 0.3054 |
cosine_recall@100 | 0.8329 | 0.5438 | 0.4677 | 0.2863 | 0.8472 | 0.7525 | 0.3835 |
cosine_recall@150 | 0.8745 | 0.5825 | 0.5183 | 0.3287 | 0.8825 | 0.8026 | 0.4309 |
cosine_recall@200 | 0.9057 | 0.6147 | 0.5517 | 0.3631 | 0.9051 | 0.8418 | 0.4715 |
cosine_ndcg@1 | 0.6571 | 0.1243 | 0.2956 | 0.3495 | 0.4113 | 0.2943 | 0.0971 |
cosine_ndcg@20 | 0.6845 | 0.5385 | 0.4601 | 0.2468 | 0.5117 | 0.3919 | 0.1385 |
cosine_ndcg@50 | 0.704 | 0.5012 | 0.4229 | 0.2394 | 0.542 | 0.4256 | 0.1656 |
cosine_ndcg@100 | 0.7589 | 0.5147 | 0.4371 | 0.2619 | 0.5588 | 0.4462 | 0.1835 |
cosine_ndcg@150 | 0.7774 | 0.5348 | 0.4629 | 0.2787 | 0.5656 | 0.4561 | 0.1931 |
cosine_ndcg@200 | 0.7893 | 0.5505 | 0.4797 | 0.2919 | 0.5697 | 0.4632 | 0.2007 |
cosine_mrr@1 | 0.6571 | 0.1243 | 0.2956 | 0.3495 | 0.4113 | 0.2943 | 0.0971 |
cosine_mrr@20 | 0.8103 | 0.5515 | 0.4896 | 0.4485 | 0.4979 | 0.3779 | 0.1522 |
cosine_mrr@50 | 0.8103 | 0.5515 | 0.4909 | 0.4515 | 0.501 | 0.3815 | 0.1564 |
cosine_mrr@100 | 0.8103 | 0.5515 | 0.4911 | 0.4519 | 0.5018 | 0.3827 | 0.158 |
cosine_mrr@150 | 0.8103 | 0.5515 | 0.4912 | 0.4523 | 0.5021 | 0.3831 | 0.1585 |
cosine_mrr@200 | 0.8103 | 0.5515 | 0.4912 | 0.4525 | 0.5021 | 0.3832 | 0.1588 |
cosine_map@1 | 0.6571 | 0.1243 | 0.2956 | 0.3495 | 0.4113 | 0.2943 | 0.0971 |
cosine_map@20 | 0.5418 | 0.4028 | 0.3236 | 0.147 | 0.4264 | 0.3097 | 0.0875 |
cosine_map@50 | 0.5327 | 0.3422 | 0.2644 | 0.1267 | 0.4338 | 0.3174 | 0.093 |
cosine_map@100 | 0.5657 | 0.3395 | 0.2576 | 0.1326 | 0.436 | 0.3199 | 0.095 |
cosine_map@150 | 0.5734 | 0.3478 | 0.2669 | 0.1352 | 0.4366 | 0.3207 | 0.0957 |
cosine_map@200 | 0.5772 | 0.3534 | 0.2722 | 0.1368 | 0.4368 | 0.3212 | 0.0961 |
cosine_map@500 | 0.5814 | 0.3631 | 0.2833 | 0.1407 | 0.4373 | 0.3219 | 0.0971 |
Training Details
Training Datasets
full_en
full_en
- Dataset: full_en
- Size: 28,880 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 3 tokens
- mean: 5.0 tokens
- max: 10 tokens
- min: 3 tokens
- mean: 5.01 tokens
- max: 13 tokens
- Samples:
anchor positive air commodore
flight lieutenant
command and control officer
flight officer
air commodore
command and control officer
- Loss:
GISTEmbedLoss
with these parameters:{'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
full_de
full_de
- Dataset: full_de
- Size: 23,023 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 3 tokens
- mean: 11.05 tokens
- max: 45 tokens
- min: 3 tokens
- mean: 11.43 tokens
- max: 45 tokens
- Samples:
anchor positive Staffelkommandantin
Kommodore
Luftwaffenoffizierin
Luftwaffenoffizier/Luftwaffenoffizierin
Staffelkommandantin
Luftwaffenoffizierin
- Loss:
GISTEmbedLoss
with these parameters:{'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
full_es
full_es
- Dataset: full_es
- Size: 20,724 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 3 tokens
- mean: 12.95 tokens
- max: 50 tokens
- min: 3 tokens
- mean: 12.57 tokens
- max: 50 tokens
- Samples:
anchor positive jefe de escuadrón
instructor
comandante de aeronave
instructor de simulador
instructor
oficial del Ejército del Aire
- Loss:
GISTEmbedLoss
with these parameters:{'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
full_zh
full_zh
- Dataset: full_zh
- Size: 30,401 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 4 tokens
- mean: 8.36 tokens
- max: 20 tokens
- min: 4 tokens
- mean: 8.95 tokens
- max: 27 tokens
- Samples:
anchor positive 技术总监
技术和运营总监
技术总监
技术主管
技术总监
技术艺术总监
- Loss:
GISTEmbedLoss
with these parameters:{'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
mix
mix
- Dataset: mix
- Size: 21,760 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 2 tokens
- mean: 5.65 tokens
- max: 14 tokens
- min: 2 tokens
- mean: 10.08 tokens
- max: 30 tokens
- Samples:
anchor positive technical manager
Technischer Direktor für Bühne, Film und Fernsehen
head of technical
directora técnica
head of technical department
技术艺术总监
- Loss:
GISTEmbedLoss
with these parameters:{'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 128per_device_eval_batch_size
: 128gradient_accumulation_steps
: 2num_train_epochs
: 5warmup_ratio
: 0.05log_on_each_node
: Falsefp16
: Truedataloader_num_workers
: 4ddp_find_unused_parameters
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 128per_device_eval_batch_size
: 128per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 2eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.05warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Falselogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Truedataloader_num_workers
: 4dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Trueddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | full_en_cosine_ndcg@200 | full_es_cosine_ndcg@200 | full_de_cosine_ndcg@200 | full_zh_cosine_ndcg@200 | mix_es_cosine_ndcg@200 | mix_de_cosine_ndcg@200 | mix_zh_cosine_ndcg@200 |
---|---|---|---|---|---|---|---|---|---|
-1 | -1 | - | 0.7322 | 0.4690 | 0.3853 | 0.2723 | 0.3209 | 0.2244 | 0.0919 |
0.0021 | 1 | 23.8878 | - | - | - | - | - | - | - |
0.2058 | 100 | 7.2098 | - | - | - | - | - | - | - |
0.4115 | 200 | 4.2635 | 0.7800 | 0.5132 | 0.4268 | 0.2798 | 0.4372 | 0.2996 | 0.1447 |
0.6173 | 300 | 4.1931 | - | - | - | - | - | - | - |
0.8230 | 400 | 3.73 | 0.7863 | 0.5274 | 0.4451 | 0.2805 | 0.4762 | 0.3455 | 0.1648 |
1.0309 | 500 | 3.3569 | - | - | - | - | - | - | - |
1.2366 | 600 | 3.6464 | 0.7868 | 0.5372 | 0.4540 | 0.2813 | 0.5063 | 0.3794 | 0.1755 |
1.4424 | 700 | 3.0772 | - | - | - | - | - | - | - |
1.6481 | 800 | 3.114 | 0.7906 | 0.5391 | 0.4576 | 0.2832 | 0.5221 | 0.4047 | 0.1779 |
1.8539 | 900 | 2.9246 | - | - | - | - | - | - | - |
2.0617 | 1000 | 2.7479 | 0.7873 | 0.5423 | 0.4631 | 0.2871 | 0.5323 | 0.4143 | 0.1843 |
2.2675 | 1100 | 3.049 | - | - | - | - | - | - | - |
2.4733 | 1200 | 2.6137 | 0.7878 | 0.5418 | 0.4685 | 0.2870 | 0.5470 | 0.4339 | 0.1932 |
2.6790 | 1300 | 2.8607 | - | - | - | - | - | - | - |
2.8848 | 1400 | 2.7071 | 0.7889 | 0.5465 | 0.4714 | 0.2891 | 0.5504 | 0.4362 | 0.1944 |
3.0926 | 1500 | 2.7012 | - | - | - | - | - | - | - |
3.2984 | 1600 | 2.7423 | 0.7882 | 0.5471 | 0.4748 | 0.2868 | 0.5542 | 0.4454 | 0.1976 |
3.5041 | 1700 | 2.5316 | - | - | - | - | - | - | - |
3.7099 | 1800 | 2.6344 | 0.7900 | 0.5498 | 0.4763 | 0.2857 | 0.5639 | 0.4552 | 0.1954 |
3.9156 | 1900 | 2.4983 | - | - | - | - | - | - | - |
4.1235 | 2000 | 2.5423 | 0.7894 | 0.5499 | 0.4786 | 0.2870 | 0.5644 | 0.4576 | 0.1974 |
4.3292 | 2100 | 2.5674 | - | - | - | - | - | - | - |
4.5350 | 2200 | 2.6237 | 0.7899 | 0.5502 | 0.4802 | 0.2843 | 0.5674 | 0.4607 | 0.1993 |
4.7407 | 2300 | 2.3776 | - | - | - | - | - | - | - |
4.9465 | 2400 | 2.1116 | 0.7893 | 0.5505 | 0.4797 | 0.2919 | 0.5697 | 0.4632 | 0.2007 |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.5.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
GISTEmbedLoss
@misc{solatorio2024gistembed,
title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
author={Aivin V. Solatorio},
year={2024},
eprint={2402.16829},
archivePrefix={arXiv},
primaryClass={cs.LG}
}