Job - Job matching finetuned Alibaba-NLP/gte-Qwen2-7B-instruct
Best performing model on TalentCLEF 2025 Task A. Use it for multilingual job title matching
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Alibaba-NLP/gte-Qwen2-7B-instruct
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 3584 dimensions
- Similarity Function: Cosine Similarity
- Training Datasets:
- full_en
- full_de
- full_es
- full_zh
- mix
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: Qwen2Model
(1): Pooling({'word_embedding_dimension': 3584, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': True, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("pj-mathematician/JobGTE-7b-Lora")
sentences = [
'Volksvertreter',
'Parlamentarier',
'Oberbürgermeister',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Training Details
Training Datasets
full_en
full_en
- Dataset: full_en
- Size: 28,880 training samples
- Columns:
anchor and positive
- Approximate statistics based on the first 1000 samples:
|
anchor |
positive |
| type |
string |
string |
| details |
- min: 2 tokens
- mean: 4.4 tokens
- max: 9 tokens
|
- min: 2 tokens
- mean: 4.42 tokens
- max: 10 tokens
|
- Samples:
| anchor |
positive |
air commodore |
flight lieutenant |
command and control officer |
flight officer |
air commodore |
command and control officer |
- Loss:
CachedGISTEmbedLoss with these parameters:{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.01, 'mini_batch_size': 64, 'margin_strategy': 'absolute', 'margin': 0.0}
full_de
full_de
- Dataset: full_de
- Size: 23,023 training samples
- Columns:
anchor and positive
- Approximate statistics based on the first 1000 samples:
|
anchor |
positive |
| type |
string |
string |
| details |
- min: 2 tokens
- mean: 9.11 tokens
- max: 33 tokens
|
- min: 2 tokens
- mean: 9.41 tokens
- max: 33 tokens
|
- Samples:
| anchor |
positive |
Staffelkommandantin |
Kommodore |
Luftwaffenoffizierin |
Luftwaffenoffizier/Luftwaffenoffizierin |
Staffelkommandantin |
Luftwaffenoffizierin |
- Loss:
CachedGISTEmbedLoss with these parameters:{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.01, 'mini_batch_size': 64, 'margin_strategy': 'absolute', 'margin': 0.0}
full_es
full_es
- Dataset: full_es
- Size: 20,724 training samples
- Columns:
anchor and positive
- Approximate statistics based on the first 1000 samples:
|
anchor |
positive |
| type |
string |
string |
| details |
- min: 3 tokens
- mean: 9.42 tokens
- max: 35 tokens
|
- min: 3 tokens
- mean: 9.18 tokens
- max: 35 tokens
|
- Samples:
| anchor |
positive |
jefe de escuadrón |
instructor |
comandante de aeronave |
instructor de simulador |
instructor |
oficial del Ejército del Aire |
- Loss:
CachedGISTEmbedLoss with these parameters:{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.01, 'mini_batch_size': 64, 'margin_strategy': 'absolute', 'margin': 0.0}
full_zh
full_zh
- Dataset: full_zh
- Size: 30,401 training samples
- Columns:
anchor and positive
- Approximate statistics based on the first 1000 samples:
|
anchor |
positive |
| type |
string |
string |
| details |
- min: 3 tokens
- mean: 4.7 tokens
- max: 12 tokens
|
- min: 3 tokens
- mean: 5.04 tokens
- max: 19 tokens
|
- Samples:
| anchor |
positive |
技术总监 |
技术和运营总监 |
技术总监 |
技术主管 |
技术总监 |
技术艺术总监 |
- Loss:
CachedGISTEmbedLoss with these parameters:{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.01, 'mini_batch_size': 64, 'margin_strategy': 'absolute', 'margin': 0.0}
mix
mix
- Dataset: mix
- Size: 21,760 training samples
- Columns:
anchor and positive
- Approximate statistics based on the first 1000 samples:
|
anchor |
positive |
| type |
string |
string |
| details |
- min: 1 tokens
- mean: 4.98 tokens
- max: 14 tokens
|
- min: 1 tokens
- mean: 7.22 tokens
- max: 27 tokens
|
- Samples:
| anchor |
positive |
technical manager |
Technischer Direktor für Bühne, Film und Fernsehen |
head of technical |
directora técnica |
head of technical department |
技术艺术总监 |
- Loss:
CachedGISTEmbedLoss with these parameters:{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.01, 'mini_batch_size': 64, 'margin_strategy': 'absolute', 'margin': 0.0}
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size: 128
per_device_eval_batch_size: 128
gradient_accumulation_steps: 2
num_train_epochs: 2
warmup_ratio: 0.05
log_on_each_node: False
fp16: True
dataloader_num_workers: 4
fsdp: ['full_shard', 'auto_wrap']
fsdp_config: {'transformer_layer_cls_to_wrap': ['Qwen2DecoderLayer'], 'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
ddp_find_unused_parameters: True
gradient_checkpointing: True
batch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: no
prediction_loss_only: True
per_device_train_batch_size: 128
per_device_eval_batch_size: 128
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 2
eval_accumulation_steps: None
torch_empty_cache_steps: None
learning_rate: 5e-05
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 2
max_steps: -1
lr_scheduler_type: linear
lr_scheduler_kwargs: {}
warmup_ratio: 0.05
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: False
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: False
fp16: True
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: None
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: True
dataloader_num_workers: 4
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: False
ignore_data_skip: False
fsdp: ['full_shard', 'auto_wrap']
fsdp_min_num_params: 0
fsdp_config: {'transformer_layer_cls_to_wrap': ['Qwen2DecoderLayer'], 'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
tp_size: 0
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: True
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: False
resume_from_checkpoint: None
hub_model_id: None
hub_strategy: every_save
hub_private_repo: None
hub_always_push: False
gradient_checkpointing: True
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
include_for_metrics: []
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
eval_on_start: False
use_liger_kernel: False
eval_use_gather_object: False
average_tokens_across_devices: False
prompts: None
batch_sampler: no_duplicates
multi_dataset_batch_sampler: proportional
Training Logs
| Epoch |
Step |
Training Loss |
| 0.0165 |
1 |
4.5178 |
| 0.0331 |
2 |
3.8803 |
| 0.0496 |
3 |
2.8882 |
| 0.0661 |
4 |
4.5362 |
| 0.0826 |
5 |
3.6406 |
| 0.0992 |
6 |
3.5285 |
| 0.1157 |
7 |
4.1398 |
| 0.1322 |
8 |
4.1543 |
| 0.1488 |
9 |
4.4487 |
| 0.1653 |
10 |
4.7408 |
| 0.1818 |
11 |
2.1874 |
| 0.1983 |
12 |
3.3176 |
| 0.2149 |
13 |
2.8286 |
| 0.2314 |
14 |
2.87 |
| 0.2479 |
15 |
2.4834 |
| 0.2645 |
16 |
2.7856 |
| 0.2810 |
17 |
3.1948 |
| 0.2975 |
18 |
2.1755 |
| 0.3140 |
19 |
1.9861 |
| 0.3306 |
20 |
2.0536 |
| 0.3471 |
21 |
2.7626 |
| 0.3636 |
22 |
1.6489 |
| 0.3802 |
23 |
2.078 |
| 0.3967 |
24 |
1.5864 |
| 0.4132 |
25 |
1.8815 |
| 0.4298 |
26 |
1.8041 |
| 0.4463 |
27 |
1.7482 |
| 0.4628 |
28 |
1.191 |
| 0.4793 |
29 |
1.4166 |
| 0.4959 |
30 |
1.3215 |
| 0.5124 |
31 |
1.2907 |
| 0.5289 |
32 |
1.1294 |
| 0.5455 |
33 |
1.1586 |
| 0.5620 |
34 |
1.551 |
| 0.5785 |
35 |
1.3628 |
| 0.5950 |
36 |
0.9899 |
| 0.6116 |
37 |
1.1846 |
| 0.6281 |
38 |
1.2721 |
| 0.6446 |
39 |
1.1261 |
| 0.6612 |
40 |
0.9535 |
| 0.6777 |
41 |
1.2086 |
| 0.6942 |
42 |
0.7472 |
| 0.7107 |
43 |
1.0324 |
| 0.7273 |
44 |
1.0397 |
| 0.7438 |
45 |
1.185 |
| 0.7603 |
46 |
1.2112 |
| 0.7769 |
47 |
0.84 |
| 0.7934 |
48 |
0.9286 |
| 0.8099 |
49 |
0.8689 |
| 0.8264 |
50 |
0.9546 |
| 0.8430 |
51 |
0.8283 |
| 0.8595 |
52 |
0.757 |
| 0.8760 |
53 |
0.9199 |
| 0.8926 |
54 |
0.7404 |
| 0.9091 |
55 |
1.0995 |
| 0.9256 |
56 |
0.8231 |
| 0.9421 |
57 |
0.6297 |
| 0.9587 |
58 |
0.9869 |
| 0.9752 |
59 |
0.9597 |
| 0.9917 |
60 |
0.7025 |
| 1.0 |
61 |
0.4866 |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.5.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}