File size: 18,894 Bytes
3352b18
 
12a753e
 
 
 
 
 
 
 
 
 
3352b18
 
fbccbfc
12a753e
 
 
 
712b7f6
12a753e
 
 
 
 
 
 
 
 
 
 
 
712b7f6
12a753e
 
32a8720
 
 
 
 
 
12a753e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4bb154
 
 
 
 
8fc0d8b
b4bb154
 
 
 
 
 
 
 
8fc0d8b
 
ed67f17
b4bb154
befccd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12a753e
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
---
library_name: transformers
license: mit
task_categories:
- text-generation
language:
- en
tags:
- agent
- Agentic Learning
- tool use
- BFCL
---

[![Funcdex-Collection](https://img.shields.io/badge/Hugging%20Face-Model-yellow?logo=huggingface)](https://huggingface.co/collections/prem-research/funcdex) [![Dataset](https://img.shields.io/badge/Hugging%20Face-Dataset-yellow?logo=huggingface)](https://huggingface.co/datasets/prem-research/Funcdex-MT-Function-Calling) [![GitHub](https://img.shields.io/badge/GitHub-Code-181717?logo=github)](https://github.com/prem-research/Funcdex-Synthesizer) [![PremAI](https://img.shields.io/badge/Project-PremAI-green)](https://www.premai.io/)

# Funcdex-1.7B

<div align="center">
  <img src="assets/funcdex_hero.png" alt="Funcdex Hero" width="70%">
</div>

Funcdex-1.7B is a research preview model by Prem Labs. It has been trained on a mix of [Funcdex-MT-Function-Calling](https://huggingface.co/datasets/prem-research/Funcdex-MT-Function-Calling), Instruct-Following, Single-turn function datasets. It is a LoRA finetune of Qwen3-1.7B (with thinking disabled). 

This model excels at Multi-turn Function Calling with tools from `gmail`, `jira`, `calendar`, `docs`, etc. 

The code used to generate the dataset can be found [here](https://github.com/prem-research/Funcdex-Synthesizer).

# Evaluation


<div align="center">
  <img src="assets/line_plot.png" alt="Line Plot" width="80%">
</div>

Notes:
- *Funcdex-0.6B is the average of performances of individual Funcdex-0.6B models.*
- For cost, we track the number of prompt/completion tokens for evaluating 300 conversations.
- e.g. If token cost is input=$1 and output=$10 per million tokens, and evaluation needed `0.5M` and `0.1M` input/output tokens, then cost is `1 * 0.5 + 0.1 * 10 = $1.5`.
- *Qwen3-0.6B and Qwen3-1.7B evaluation costs are estimated by extrapolating from Llama3.2-3B serverless costs. Other model's costs are sourced from Openrouter.*

## Results

### BFCL v3
- We filtered BFCLv3 examples relevant to the toolkits/bundles and report performance:
- The filtered set is only 83 examples. Further emphasizing the need for workflow/toolkit-specialized workflows.

<table border="1" class="dataframe">
  <thead>
    <tr style="text-align: center;">
      <th>LLM</th>
      <th>Acc %</th>
    </tr>
  </thead>
  <tbody>
    <tr style="text-align: center;">
      <td>GPT-5 Mini<br>(medium)</td>
      <td>0.71</td>
    </tr>
    <tr style="text-align: center;">
      <td>Qwen3-1.7B</td>
      <td>0.82</td>
    </tr>
    <tr style="text-align: center;">
      <td><strong><a href="https://huggingface.co/prem-research/Funcdex-1.7B">Funcdex-1.7B</a><strong></td>
      <td><strong>0.86</strong></td>
    </tr>
  </tbody>
</table>


### Funcdex-MT: Overall Performance

<table border="1" class="dataframe">
  <thead>
    <tr style="text-align: center;">
      <th>LLM</th>
      <th>Exact Match</th>
      <th>String Ratio</th>
      <th>Total Cost ($)</th>
    </tr>
  </thead>
  <tbody>
    <tr style="text-align: center;">
      <td>GPT-OSS-120B<br>(medium)</td>
      <td>0.35</td>
      <td>0.51</td>
      <td>9.32</td>
    </tr>
    <tr style="text-align: center;">
      <td>GPT-5 Mini<br>(medium)</td>
      <td>0.35</td>
      <td>0.58</td>
      <td>99.71</td>
    </tr>
    <tr style="text-align: center;">
      <td>GPT-5<br>(minimal)</td>
      <td>0.18</td>
      <td>0.59</td>
      <td>205.45</td>
    </tr>
    <tr style="text-align: center;">
      <td>Qwen3-0.6B</td>
      <td>0.27</td>
      <td>0.59</td>
      <td>2.83</td>
    </tr>
    <tr style="text-align: center;">
      <td>Qwen3-1.7B</td>
      <td>0.27</td>
      <td>0.69</td>
      <td>5.73</td>
    </tr>
    <tr style="text-align: center;">
      <td><strong><a href="https://huggingface.co/collections/prem-research/funcdex">Funcdex-0.6B</a></strong></td>
      <td><strong>0.39</strong></td>
      <td><strong>0.70</strong></td>
      <td><strong>0.19</strong></td>
    </tr>
    <tr style="text-align: center;">
      <td><strong><a href="https://huggingface.co/prem-research/Funcdex-1.7B">Funcdex-1.7B</a></strong></td>
      <td><strong>0.43</strong></td>
      <td><strong>0.81</strong></td>
      <td>5.64</td>
    </tr>
  </tbody>
</table>

### Funcdex-MT: Toolkit-Level Performance

<table border="1" class="dataframe">
  <thead>
    <tr style="text-align: center;">
      <th rowspan="2">Toolkit</th>
      <th colspan="2">GPT-OSS-120B<br>(medium)</th>
      <th colspan="2">GPT-5<br>(minimal)</th>
      <th colspan="2">GPT-5 Mini<br>(medium)</th>
      <th colspan="2">Qwen3-0.6B</th>
      <th colspan="3">Funcdex-0.6B</th>
      <th colspan="2">Qwen3-1.7B</th>
      <th colspan="3">Funcdex-1.7B</th>
    </tr>
    <tr style="text-align: center;">
      <th>EM</th>
      <th>SR</th>
      <th>EM</th>
      <th>SR</th>
      <th>EM</th>
      <th>SR</th>
      <th>EM</th>
      <th>SR</th>
      <th>EM</th>
      <th>SR</th>
      <th>LoRA Checkpoint</th>
      <th>EM</th>
      <th>SR</th>
      <th>EM</th>
      <th>SR</th>
      <th>LoRA Checkpoint</th>
    </tr>
  </thead>
  <tbody>
    <tr style="text-align: center;">
      <td><img src="assets/icons/asana.png" width="20" height="20" style="vertical-align: middle;"/> Asana</td>
      <td>0.38</td>
      <td>0.47</td>
      <td>0.12</td>
      <td>0.68</td>
      <td>0.49</td>
      <td>0.71</td>
      <td>0.33</td>
      <td>0.63</td>
      <td>0.46</td>
      <td>0.69</td>
      <td><a href="https://huggingface.co/prem-research/Funcdex-0.6B-asana">πŸ€—</a></td>
      <td>0.30</td>
      <td>0.79</td>
      <td>0.52</td>
      <td>0.82</td>
      <td rowspan="10"><a href="https://huggingface.co/prem-research/Funcdex-1.7B">πŸ€—</a></td>
    </tr>
    <tr style="text-align: center;">
      <td><img src="assets/icons/calendly.png" width="20" height="20" style="vertical-align: middle;"/> Calendly</td>
      <td>0.47</td>
      <td>0.56</td>
      <td>0.41</td>
      <td>0.63</td>
      <td>0.41</td>
      <td>0.56</td>
      <td>0.44</td>
      <td>0.66</td>
      <td>0.54</td>
      <td>0.78</td>
      <td><a href="https://huggingface.co/prem-research/Funcdex-0.6B-calendly">πŸ€—</a></td>
      <td>0.47</td>
      <td>0.74</td>
      <td>0.54</td>
      <td>0.86</td>
    </tr>
    <tr style="text-align: center;">
      <td><img src="assets/icons/gmail.png" width="20" height="20" style="vertical-align: middle;"/> Gmail</td>
      <td>0.48</td>
      <td>0.70</td>
      <td>0.24</td>
      <td>0.69</td>
      <td>0.50</td>
      <td>0.73</td>
      <td>0.27</td>
      <td>0.61</td>
      <td>0.47</td>
      <td>0.72</td>
      <td><a href="https://huggingface.co/prem-research/Funcdex-0.6B-gmail">πŸ€—</a></td>
      <td>0.31</td>
      <td>0.73</td>
      <td>0.53</td>
      <td>0.83</td>
    </tr>
    <tr style="text-align: center;">
      <td><img src="assets/icons/google-calendar.png" width="20" height="20" style="vertical-align: middle;"/> Calendar</td>
      <td>0.27</td>
      <td>0.52</td>
      <td>0.20</td>
      <td>0.50</td>
      <td>0.21</td>
      <td>0.51</td>
      <td>0.21</td>
      <td>0.53</td>
      <td>0.39</td>
      <td>0.74</td>
      <td><a href="https://huggingface.co/prem-research/Funcdex-0.6B-googlecalendar">πŸ€—</a></td>
      <td>0.23</td>
      <td>0.64</td>
      <td>0.47</td>
      <td>0.83</td>
    </tr>
    <tr style="text-align: center;">
      <td><img src="assets/icons/docs.png" width="20" height="20" style="vertical-align: middle;"/> Docs</td>
      <td>0.19</td>
      <td>0.38</td>
      <td>0.07</td>
      <td>0.49</td>
      <td>0.18</td>
      <td>0.46</td>
      <td>0.07</td>
      <td>0.58</td>
      <td>0.13</td>
      <td>0.64</td>
      <td><a href="https://huggingface.co/prem-research/Funcdex-0.6B-googledocs">πŸ€—</a></td>
      <td>0.11</td>
      <td>0.62</td>
      <td>0.18</td>
      <td>0.79</td>
    </tr>
    <tr style="text-align: center;">
      <td><img src="assets/icons/google-drive.png" width="20" height="20" style="vertical-align: middle;"/> Drive</td>
      <td>0.34</td>
      <td>0.52</td>
      <td>0.19</td>
      <td>0.61</td>
      <td>0.38</td>
      <td>0.58</td>
      <td>0.26</td>
      <td>0.65</td>
      <td>0.40</td>
      <td>0.75</td>
      <td><a href="https://huggingface.co/prem-research/Funcdex-0.6B-googledrive">πŸ€—</a></td>
      <td>0.26</td>
      <td>0.73</td>
      <td>0.48</td>
      <td>0.82</td>
    </tr>
    <tr style="text-align: center;">
      <td><img src="assets/icons/jira.png" width="20" height="20" style="vertical-align: middle;"/> Jira</td>
      <td>0.47</td>
      <td>0.53</td>
      <td>0.17</td>
      <td>0.65</td>
      <td>0.47</td>
      <td>0.66</td>
      <td>0.51</td>
      <td>0.69</td>
      <td>0.58</td>
      <td>0.76</td>
      <td><a href="https://huggingface.co/prem-research/Funcdex-0.6B-jira">πŸ€—</a></td>
      <td>0.47</td>
      <td>0.76</td>
      <td>0.59</td>
      <td>0.83</td>
    </tr>
    <tr style="text-align: center;">
      <td><img src="assets/icons/stripe.png" width="20" height="20" style="vertical-align: middle;"/> Stripe</td>
      <td>0.15</td>
      <td>0.37</td>
      <td>0.10</td>
      <td>0.46</td>
      <td>0.12</td>
      <td>0.39</td>
      <td>0.08</td>
      <td>0.50</td>
      <td>0.17</td>
      <td>0.71</td>
      <td><a href="https://huggingface.co/prem-research/Funcdex-0.6B-stripe">πŸ€—</a></td>
      <td>0.09</td>
      <td>0.56</td>
      <td>0.16</td>
      <td>0.80</td>
    </tr>
    <tr style="text-align: center;">
      <td><img src="assets/icons/to-do-list.png" width="20" height="20" style="vertical-align: middle;"/> Todoist</td>
      <td>0.65</td>
      <td>0.74</td>
      <td>0.19</td>
      <td>0.72</td>
      <td>0.64</td>
      <td>0.79</td>
      <td>0.57</td>
      <td>0.87</td>
      <td>0.65</td>
      <td>0.88</td>
      <td><a href="https://huggingface.co/prem-research/Funcdex-0.6B-todoist">πŸ€—</a></td>
      <td>0.55</td>
      <td>0.91</td>
      <td>0.72</td>
      <td>0.94</td>
    </tr>
    <tr style="text-align: center;">
      <td><img src="assets/icons/whatsapp.png" width="20" height="20" style="vertical-align: middle;"/> Whatsapp</td>
      <td>0.23</td>
      <td>0.39</td>
      <td>0.13</td>
      <td>0.47</td>
      <td>0.24</td>
      <td>0.43</td>
      <td>0.20</td>
      <td>0.43</td>
      <td>0.28</td>
      <td>0.64</td>
      <td><a href="https://huggingface.co/prem-research/Funcdex-0.6B-whatsapp">πŸ€—</a></td>
      <td>0.26</td>
      <td>0.55</td>
      <td>0.31</td>
      <td>0.71</td>
    </tr>
  </tbody>
</table>

- Funcdex-0.6B are specialized models. Reported number is the average performance of each specific model in their respective subset.

### Funcdex-MT: Bundle/Multi-toolkit Performance:

<table border="1" class="dataframe">
  <thead>
    <tr style="text-align: center;">
      <th rowspan="2">Bundle</th>
      <th colspan="2">GPT-OSS-120B<br>(medium)</th>
      <th colspan="2">GPT-5<br>(minimal)</th>
      <th colspan="2">GPT-5 Mini<br>(medium)</th>
      <th colspan="2">Qwen3-0.6B</th>
      <th colspan="3">Funcdex-0.6B</th>
      <th colspan="2">Qwen3-1.7B</th>
      <th colspan="3">Funcdex-1.7B</th>
    </tr>
    <tr style="text-align: center;">
      <th>EM</th>
      <th>SR</th>
      <th>EM</th>
      <th>SR</th>
      <th>EM</th>
      <th>SR</th>
      <th>EM</th>
      <th>SR</th>
      <th>EM</th>
      <th>SR</th>
      <th>LoRA Checkpoint</th>
      <th>EM</th>
      <th>SR</th>
      <th>EM</th>
      <th>SR</th>
      <th>LoRA Checkpoint</th>
    </tr>
  </thead>
  <tbody>
    <tr style="text-align: center;">
      <td><img src="assets/icons/gmail.png" width="20" height="20" style="vertical-align: middle;"/>Gmail<img src="assets/icons/google-calendar.png" width="20" height="20" style="vertical-align: middle;"/>Calendar</td>
      <td>0.28</td>
      <td>0.53</td>
      <td>0.15</td>
      <td>0.54</td>
      <td>0.22</td>
      <td>0.56</td>
      <td>0.19</td>
      <td>0.51</td>
      <td>0.26</td>
      <td>0.54</td>
      <td><a href="https://huggingface.co/prem-research/Funcdex-0.6B-gmail_googlecalendar">πŸ€—</a></td>
      <td>0.17</td>
      <td>0.61</td>
      <td>0.32</td>
      <td>0.71</td>
      <td rowspan="5"><a href="https://huggingface.co/prem-research/Funcdex-1.7B">πŸ€—</a></td>
    </tr>
    <tr style="text-align: center;">
      <td><img src="assets/icons/google-drive.png" width="20" height="20" style="vertical-align: middle;"/>Drive <img src="assets/icons/calendly.png" width="20" height="20" style="vertical-align: middle;"/> Calendly <img src="assets/icons/google-calendar.png" width="20" height="20" style="vertical-align: middle;"/> Calendar</td>
      <td>0.32</td>
      <td>0.45</td>
      <td>0.17</td>
      <td>0.52</td>
      <td>0.35</td>
      <td>0.47</td>
      <td>0.19</td>
      <td>0.49</td>
      <td>0.35</td>
      <td>0.60</td>
      <td><a href="https://huggingface.co/prem-research/Funcdex-0.6B-googledrive_calendly_googlecalendar">πŸ€—</a></td>
      <td>0.15</td>
      <td>0.66</td>
      <td>0.40</td>
      <td>0.78</td>
    </tr>
    <tr style="text-align: center;">
      <td><img src="assets/icons/google-drive.png" width="20" height="20" style="vertical-align: middle;"/>Drive <img src="assets/icons/docs.png" width="20" height="20" style="vertical-align: middle;"/> Docs</td>
      <td>0.28</td>
      <td>0.37</td>
      <td>0.12</td>
      <td>0.50</td>
      <td>0.33</td>
      <td>0.47</td>
      <td>0.18</td>
      <td>0.54</td>
      <td>0.34</td>
      <td>0.70</td>
      <td><a href="https://huggingface.co/prem-research/Funcdex-0.6B-googledrive_googledocs">πŸ€—</a></td>
      <td>0.19</td>
      <td>0.68</td>
      <td>0.43</td>
      <td>0.76</td>
    </tr>
    <tr style="text-align: center;">
      <td><img src="assets/icons/jira.png" width="20" height="20" style="vertical-align: middle;"/>Jira <img src="assets/icons/gmail.png" width="20" height="20" style="vertical-align: middle;"/> Gmail</td>
      <td>0.42</td>
      <td>0.60</td>
      <td>0.18</td>
      <td>0.66</td>
      <td>0.36</td>
      <td>0.66</td>
      <td>0.29</td>
      <td>0.61</td>
      <td>0.39</td>
      <td>0.71</td>
      <td><a href="https://huggingface.co/prem-research/Funcdex-0.6B-jira_gmail">πŸ€—</a></td>
      <td>0.28</td>
      <td>0.72</td>
      <td>0.44</td>
      <td>0.82</td>
    </tr>
    <tr style="text-align: center;">
      <td><img src="assets/icons/whatsapp.png" width="20" height="20" style="vertical-align: middle;"/>Whatsapp <img src="assets/icons/to-do-list.png" width="20" height="20" style="vertical-align: middle;"/> Todoist</td>
      <td>0.32</td>
      <td>0.58</td>
      <td>0.19</td>
      <td>0.66</td>
      <td>0.35</td>
      <td>0.69</td>
      <td>0.26</td>
      <td>0.50</td>
      <td>0.41</td>
      <td>0.70</td>
      <td><a href="https://huggingface.co/prem-research/Funcdex-0.6B-whatsapp_todoist">πŸ€—</a></td>
      <td>0.27</td>
      <td>0.68</td>
      <td>0.39</td>
      <td>0.77</td>
    </tr>
  </tbody>
</table>


## Inference

- Given a conversation, we extract all tuples `(context_messages, function_calls)` and use it to generate predictions. We ignore the `content` field and only evaluate `function_calls` generated by an LLM.
- We use vLLM deployment with `tool_choice="auto"`.


## Metrics

Given a list of predicted and reference function calls, we report two metrics:
- **Function Call String Match (SR)**: We perform greedy match and report best-matched string ratio using `difflib.SequenceMatcher.ratio`. The number reported is average string ratio.
- **Exact Match (EM)**: Same as above, but we perform exact string match instead. The number reported is EM F1 Score.

EM is a strict metric, and penalizes string arguments in function calls that may be "okay", e.g. `"email_content": "This is an example."` v/s `"email_content": "This is an Example."`, both only differ by one letter.

## Deployment with vLLM

`vllm serve ojus1/Qwen3-1.7B-Instruct --enable-lora --lora-modules prem-research/Funcdex-1.7B=prem-research/Funcdex-1.7B  --enable-auto-tool-choice --tool-call-parser hermes`

# Quickstart

```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
import torch
import json

# Load model and tokenizer
base_model_name = "ojus1/Qwen3-1.7B-Instruct"
model_name = "prem-research/Funcdex-1.7B"

tokenizer = AutoTokenizer.from_pretrained(model_name)

base_model = AutoModelForCausalLM.from_pretrained(
    base_model_name,
    torch_dtype="auto",
    device_map="auto"
)

model = PeftModel.from_pretrained(
    base_model,
    model_name,
    torch_dtype="auto",
    device_map="auto"
)

# Define tools (supports all toolkits)
tools = [
    {
        "type": "function",
        "function": {
            "name": "CREATE_SHARED_DRIVE",
            "description": "Create a new shared drive in Google Drive",
            "parameters": {
                "type": "object",
                "properties": {
                    "name": {"type": "string", "description": "Name of the shared drive"},
                    "requestId": {"type": "string", "description": "Unique request ID"}
                },
                "required": ["name", "requestId"]
            }
        }
    },
    {
        "type": "function",
        "function": {
            "name": "CREATE_A_FOLDER",
            "description": "Create a folder in Google Drive",
            "parameters": {
                "type": "object",
                "properties": {
                    "folder_name": {"type": "string", "description": "Name of the folder"},
                    "parent_id": {"type": "string", "description": "Parent drive or folder ID"}
                },
                "required": ["folder_name", "parent_id"]
            }
        }
    }
]

# Define conversation
messages = [
    {"role": "system", "content": "You are a helpful assistant that can help with tasks by using tools."},
    {"role": "user", "content": "Create a shared drive named 'Partner-Alpha-Integration' with request ID 'req-12345'."}
]

# Apply chat template with tools
formatted_input = tokenizer.apply_chat_template(
    messages,
    tools=tools,
    tokenize=False,
    add_generation_prompt=True
)

# Tokenize and generate
input_tokens = tokenizer(formatted_input, return_tensors="pt").to(model.device)
output = model.generate(**input_tokens, max_new_tokens=256, do_sample=False)
response = tokenizer.decode(output[0][input_tokens['input_ids'].shape[1]:], skip_special_tokens=True)

print("Response:", response)
# Expected output includes: <tool_call>{"name": "CREATE_SHARED_DRIVE", "arguments": {"name": "Partner-Alpha-Integration", "requestId": "req-12345"}}</tool_call>
```

For best results, provide detailed system-prompt to steer the tool-use behaviour.

# License

The models, code and the dataset are licensed under MIT License.