Dots.OCR-Latest-BF16
Dots.OCR-Latest-BF16 is an optimized and updated vision-language OCR model variant of the original Dots.OCR. This open-source model is designed to extract text from images and scanned documents, including handwritten and printed content. It can output results as plain text or Markdown, preserving document layout elements such as headings, tables, and lists. This model uses a powerful multimodal backbone (3B VLM) to enhance reading comprehension and layout understanding, handling cursive handwriting and complex document structures effectively.
The BF16 variant has been tested and updated to work smoothly with the latest transformers version without compatibility issues, ensuring optimized performance.
transformers: 4.57.1
torch: 2.6.0+cu124
cuda: 12.4
device: NVIDIA H200 MIG 3g.71gb
attn_implementation= "flash_attention_2"
Quick Start with Transformers π€
Install the required packages
gradio
numpy
torch
torchvision
transformers==4.57.1
accelerate
matplotlib
flash-attn @ https://github.com/Dao-AILab/flash-attention/releases/download/v2.7.3/flash_attn-2.7.3+cu12torch2.6cxx11abiFALSE-cp310-cp310-linux_x86_64.whl
Run Demo
import os
import sys
import random
import uuid
import json
import time
from threading import Thread
from typing import Iterable
from huggingface_hub import snapshot_download
import gradio as gr
import torch
import numpy as np
from PIL import Image
import cv2
from transformers import (
AutoModelForCausalLM,
AutoProcessor,
TextIteratorStreamer,
)
from transformers.image_utils import load_image
css = """
#main-title h1 {
font-size: 2.3em !important;
}
#output-title h2 {
font-size: 2.1em !important;
}
"""
MAX_MAX_NEW_TOKENS = 4096
DEFAULT_MAX_NEW_TOKENS = 2048
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print("--- System Information ---")
print("CUDA_VISIBLE_DEVICES=", os.environ.get("CUDA_VISIBLE_DEVICES"))
print("torch.__version__ =", torch.__version__)
print("torch.version.cuda =", torch.version.cuda)
print("CUDA available:", torch.cuda.is_available())
print("CUDA device count:", torch.cuda.device_count())
if torch.cuda.is_available():
print("Current device:", torch.cuda.current_device())
print("Device name:", torch.cuda.get_device_name(torch.cuda.current_device()))
print("Using device:", device)
print("--------------------------")
print("Loading Dots.OCR model...")
MODEL_PATH_D = "prithivMLmods/Dots.OCR-Latest-BF16"
processor = AutoProcessor.from_pretrained(MODEL_PATH_D, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
MODEL_PATH_D,
attn_implementation="flash_attention_2",
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True
).eval()
print("Dots.OCR model loaded successfully.")
def generate_image(text: str, image: Image.Image,
max_new_tokens: int, temperature: float, top_p: float,
top_k: int, repetition_penalty: float):
"""
Generates responses using the Dots.OCR model for image input.
Yields raw text and Markdown-formatted text.
"""
if image is None:
yield "Please upload an image.", "Please upload an image."
return
messages = [{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": text},
]
}]
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(
text=[prompt_full],
images=[image],
return_tensors="pt",
padding=True).to(device)
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
**inputs,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty,
}
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
# Clean up potential end-of-sequence tokens from the buffer
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer, buffer
with gr.Blocks(css=css) as demo:
gr.Markdown("# **Dots.OCR**", elem_id="main-title")
with gr.Row():
with gr.Column(scale=2):
image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
image_upload = gr.Image(type="pil", label="Upload Image", height=290)
image_submit = gr.Button("Submit", variant="primary")
with gr.Accordion("Advanced options", open=False):
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.7)
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.1)
with gr.Column(scale=3):
gr.Markdown("## Output", elem_id="output-title")
output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=15, show_copy_button=True)
with gr.Accordion("(Result.md)", open=False):
markdown_output = gr.Markdown(label="(Result.Md)")
image_submit.click(
fn=generate_image,
inputs=[image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
outputs=[output, markdown_output]
)
if __name__ == "__main__":
demo.queue(max_size=50).launch(ssr_mode=False, show_error=True)
Model and Resource Links
| Resource Type | Description | Link |
|---|---|---|
| Original Model Card | Official release of Dots.OCR by rednote-hilab | rednote-hilab/dots.ocr |
| Test Model (StrangerZone HF) | Community test deployment (experimental) | strangervisionhf/dots.ocr-base-fix |
| Standard Model Card | Optimized version supporting Transformers v4.57.1 (BF16 precision) | prithivMLmods/Dots.OCR-Latest-BF16 |
| Demo Space | Interactive demo hosted on Hugging Face Spaces | Multimodal-OCR3 Demo |
- Downloads last month
- 64
Model tree for prithivMLmods/Dots.OCR-Latest-BF16
Base model
rednote-hilab/dots.ocr