File size: 7,309 Bytes
176f236 df91ae2 d02509c 176f236 f1e150b 0bcb668 176f236 5b70573 ba37b50 b27c339 d5358c8 ba37b50 6d9f065 c239fa2 6d9f065 a30ed81 a4f8602 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
---
license: mit
language:
- en
base_model:
- rednote-hilab/dots.ocr
pipeline_tag: image-text-to-text
library_name: transformers
tags:
- pytorch
- markdown
- text-generation-inference
- ocr
- document
- vlm
- extraction
---

# **Dots.OCR-Latest-BF16**
> **Dots.OCR-Latest-BF16** is an optimized and updated vision-language OCR model variant of the original [Dots.OCR](https://huggingface.co/rednote-hilab/dots.ocr). This open-source model is designed to extract text from images and scanned documents, including handwritten and printed content. It can output results as plain text or Markdown, preserving document layout elements such as headings, tables, and lists. This model uses a powerful multimodal backbone (**3B VLM**) to enhance reading comprehension and layout understanding, handling cursive handwriting and complex document structures effectively.
The **BF16 variant** has been tested and updated to work smoothly with the latest `transformers` version without compatibility issues, ensuring optimized performance.
```
transformers: 4.57.1
torch: 2.6.0+cu124
cuda: 12.4
device: NVIDIA H200 MIG 3g.71gb
attn_implementation= "flash_attention_2"
```
## Quick Start with Transformers 🤗
#### Install the required packages
```
gradio
numpy
torch
torchvision
transformers==4.57.1
accelerate
matplotlib
flash-attn @ https://github.com/Dao-AILab/flash-attention/releases/download/v2.7.3/flash_attn-2.7.3+cu12torch2.6cxx11abiFALSE-cp310-cp310-linux_x86_64.whl
```
### Run Demo
```py
import os
import sys
import random
import uuid
import json
import time
from threading import Thread
from typing import Iterable
from huggingface_hub import snapshot_download
import gradio as gr
import torch
import numpy as np
from PIL import Image
import cv2
from transformers import (
AutoModelForCausalLM,
AutoProcessor,
TextIteratorStreamer,
)
from transformers.image_utils import load_image
css = """
#main-title h1 {
font-size: 2.3em !important;
}
#output-title h2 {
font-size: 2.1em !important;
}
"""
MAX_MAX_NEW_TOKENS = 4096
DEFAULT_MAX_NEW_TOKENS = 2048
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print("--- System Information ---")
print("CUDA_VISIBLE_DEVICES=", os.environ.get("CUDA_VISIBLE_DEVICES"))
print("torch.__version__ =", torch.__version__)
print("torch.version.cuda =", torch.version.cuda)
print("CUDA available:", torch.cuda.is_available())
print("CUDA device count:", torch.cuda.device_count())
if torch.cuda.is_available():
print("Current device:", torch.cuda.current_device())
print("Device name:", torch.cuda.get_device_name(torch.cuda.current_device()))
print("Using device:", device)
print("--------------------------")
print("Loading Dots.OCR model...")
MODEL_PATH_D = "prithivMLmods/Dots.OCR-Latest-BF16"
processor = AutoProcessor.from_pretrained(MODEL_PATH_D, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
MODEL_PATH_D,
attn_implementation="flash_attention_2",
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True
).eval()
print("Dots.OCR model loaded successfully.")
def generate_image(text: str, image: Image.Image,
max_new_tokens: int, temperature: float, top_p: float,
top_k: int, repetition_penalty: float):
"""
Generates responses using the Dots.OCR model for image input.
Yields raw text and Markdown-formatted text.
"""
if image is None:
yield "Please upload an image.", "Please upload an image."
return
messages = [{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": text},
]
}]
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(
text=[prompt_full],
images=[image],
return_tensors="pt",
padding=True).to(device)
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
**inputs,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty,
}
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
# Clean up potential end-of-sequence tokens from the buffer
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer, buffer
with gr.Blocks(css=css) as demo:
gr.Markdown("# **Dots.OCR**", elem_id="main-title")
with gr.Row():
with gr.Column(scale=2):
image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
image_upload = gr.Image(type="pil", label="Upload Image", height=290)
image_submit = gr.Button("Submit", variant="primary")
with gr.Accordion("Advanced options", open=False):
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.7)
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.1)
with gr.Column(scale=3):
gr.Markdown("## Output", elem_id="output-title")
output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=15, show_copy_button=True)
with gr.Accordion("(Result.md)", open=False):
markdown_output = gr.Markdown(label="(Result.Md)")
image_submit.click(
fn=generate_image,
inputs=[image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
outputs=[output, markdown_output]
)
if __name__ == "__main__":
demo.queue(max_size=50).launch(ssr_mode=False, show_error=True)
```
## Model and Resource Links
| Resource Type | Description | Link |
|----------------|--------------|------|
| Original Model Card | Official release of Dots.OCR by rednote-hilab | [rednote-hilab/dots.ocr](https://huggingface.co/rednote-hilab/dots.ocr) |
| Test Model (StrangerZone HF) | Community test deployment (experimental) | [strangervisionhf/dots.ocr-base-fix](https://huggingface.co/strangervisionhf/dots.ocr-base-fix) |
| Standard Model Card | Optimized version supporting Transformers v4.57.1 (BF16 precision) | [prithivMLmods/Dots.OCR-Latest-BF16](https://huggingface.co/prithivMLmods/Dots.OCR-Latest-BF16) |
| Demo Space | Interactive demo hosted on Hugging Face Spaces | [Multimodal-OCR3 Demo](https://huggingface.co/spaces/prithivMLmods/Multimodal-OCR3) | |