File size: 7,309 Bytes
176f236
 
 
 
 
df91ae2
d02509c
176f236
 
f1e150b
0bcb668
176f236
5b70573
 
 
 
ba37b50
 
b27c339
d5358c8
ba37b50
 
 
 
6d9f065
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c239fa2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d9f065
a30ed81
 
 
 
 
 
 
 
a4f8602
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
---
license: mit
language:
- en
base_model:
- rednote-hilab/dots.ocr
pipeline_tag: image-text-to-text
library_name: transformers
tags:
- pytorch
- markdown
- text-generation-inference
- ocr
- document
- vlm
- extraction
---

![1](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/qtmyqoGljJO--1XC81hH7.png)

# **Dots.OCR-Latest-BF16**

> **Dots.OCR-Latest-BF16** is an optimized and updated vision-language OCR model variant of the original [Dots.OCR](https://huggingface.co/rednote-hilab/dots.ocr). This open-source model is designed to extract text from images and scanned documents, including handwritten and printed content. It can output results as plain text or Markdown, preserving document layout elements such as headings, tables, and lists. This model uses a powerful multimodal backbone (**3B VLM**) to enhance reading comprehension and layout understanding, handling cursive handwriting and complex document structures effectively.

The **BF16 variant** has been tested and updated to work smoothly with the latest `transformers` version without compatibility issues, ensuring optimized performance.

```
transformers: 4.57.1
torch: 2.6.0+cu124
cuda: 12.4
device: NVIDIA H200 MIG 3g.71gb
attn_implementation= "flash_attention_2"
```

## Quick Start with Transformers 🤗

#### Install the required packages

```
gradio
numpy
torch
torchvision
transformers==4.57.1
accelerate
matplotlib 
flash-attn @ https://github.com/Dao-AILab/flash-attention/releases/download/v2.7.3/flash_attn-2.7.3+cu12torch2.6cxx11abiFALSE-cp310-cp310-linux_x86_64.whl
```

### Run Demo

```py
import os
import sys
import random
import uuid
import json
import time
from threading import Thread
from typing import Iterable
from huggingface_hub import snapshot_download

import gradio as gr
import torch
import numpy as np
from PIL import Image
import cv2

from transformers import (
    AutoModelForCausalLM,
    AutoProcessor,
    TextIteratorStreamer,
)

from transformers.image_utils import load_image

css = """
#main-title h1 {
    font-size: 2.3em !important;
}
#output-title h2 {
    font-size: 2.1em !important;
}
"""

MAX_MAX_NEW_TOKENS = 4096
DEFAULT_MAX_NEW_TOKENS = 2048
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

print("--- System Information ---")
print("CUDA_VISIBLE_DEVICES=", os.environ.get("CUDA_VISIBLE_DEVICES"))
print("torch.__version__ =", torch.__version__)
print("torch.version.cuda =", torch.version.cuda)
print("CUDA available:", torch.cuda.is_available())
print("CUDA device count:", torch.cuda.device_count())
if torch.cuda.is_available():
    print("Current device:", torch.cuda.current_device())
    print("Device name:", torch.cuda.get_device_name(torch.cuda.current_device()))
print("Using device:", device)
print("--------------------------")

print("Loading Dots.OCR model...")
MODEL_PATH_D = "prithivMLmods/Dots.OCR-Latest-BF16"
processor = AutoProcessor.from_pretrained(MODEL_PATH_D, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
    MODEL_PATH_D,
    attn_implementation="flash_attention_2",
    torch_dtype=torch.bfloat16,
    device_map="auto",
    trust_remote_code=True
).eval()
print("Dots.OCR model loaded successfully.")

def generate_image(text: str, image: Image.Image,
                   max_new_tokens: int, temperature: float, top_p: float,
                   top_k: int, repetition_penalty: float):
    """
    Generates responses using the Dots.OCR model for image input.
    Yields raw text and Markdown-formatted text.
    """
    if image is None:
        yield "Please upload an image.", "Please upload an image."
        return

    messages = [{
        "role": "user",
        "content": [
            {"type": "image"},
            {"type": "text", "text": text},
        ]
    }]
    prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)

    inputs = processor(
        text=[prompt_full],
        images=[image],
        return_tensors="pt",
        padding=True).to(device)

    streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
    generation_kwargs = {
        **inputs,
        "streamer": streamer,
        "max_new_tokens": max_new_tokens,
        "do_sample": True,
        "temperature": temperature,
        "top_p": top_p,
        "top_k": top_k,
        "repetition_penalty": repetition_penalty,
    }
    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()
    buffer = ""
    for new_text in streamer:
        buffer += new_text
        # Clean up potential end-of-sequence tokens from the buffer
        buffer = buffer.replace("<|im_end|>", "")
        time.sleep(0.01)
        yield buffer, buffer

with gr.Blocks(css=css) as demo:
    gr.Markdown("# **Dots.OCR**", elem_id="main-title")
    with gr.Row():
        with gr.Column(scale=2):
            image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
            image_upload = gr.Image(type="pil", label="Upload Image", height=290)

            image_submit = gr.Button("Submit", variant="primary")

            with gr.Accordion("Advanced options", open=False):
                max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
                temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.7)
                top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
                top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
                repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.1)
                
        with gr.Column(scale=3):
                gr.Markdown("## Output", elem_id="output-title")
                output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=15, show_copy_button=True)
                with gr.Accordion("(Result.md)", open=False):
                    markdown_output = gr.Markdown(label="(Result.Md)")

    image_submit.click(
        fn=generate_image,
        inputs=[image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
        outputs=[output, markdown_output]
    )

if __name__ == "__main__":
    demo.queue(max_size=50).launch(ssr_mode=False, show_error=True)
```

## Model and Resource Links

| Resource Type | Description | Link |
|----------------|--------------|------|
| Original Model Card | Official release of Dots.OCR by rednote-hilab | [rednote-hilab/dots.ocr](https://huggingface.co/rednote-hilab/dots.ocr) |
| Test Model (StrangerZone HF) | Community test deployment (experimental) | [strangervisionhf/dots.ocr-base-fix](https://huggingface.co/strangervisionhf/dots.ocr-base-fix) |
| Standard Model Card | Optimized version supporting Transformers v4.57.1 (BF16 precision) | [prithivMLmods/Dots.OCR-Latest-BF16](https://huggingface.co/prithivMLmods/Dots.OCR-Latest-BF16) |
| Demo Space | Interactive demo hosted on Hugging Face Spaces | [Multimodal-OCR3 Demo](https://huggingface.co/spaces/prithivMLmods/Multimodal-OCR3) |