|
--- |
|
license: apache-2.0 |
|
language: |
|
- en |
|
pipeline_tag: image-classification |
|
library_name: transformers |
|
tags: |
|
- notebook |
|
- colab |
|
- siglip2 |
|
- image-to-text |
|
--- |
|
|
|
<div style=" |
|
background: rgba(255, 193, 61, 0.15); |
|
padding: 16px; |
|
border-radius: 6px; |
|
border: 1px solid rgba(255, 165, 0, 0.3); |
|
margin: 16px 0; |
|
"> |
|
Finetune SigLIP2 Image Classification (Notebook) |
|
</div> |
|
|
|
|
|
This notebook demonstrates how to fine-tune SigLIP 2, a robust multilingual vision-language model, for single-label image classification tasks. The fine-tuning process incorporates advanced techniques such as captioning-based pretraining, self-distillation, and masked prediction, unified within a streamlined training pipeline. The workflow supports datasets in both structured and unstructured forms, making it adaptable to various domains and resource levels. |
|
|
|
--- |
|
|
|
| Notebook Name | Description | Notebook Link | |
|
|-------------------------------------|--------------------------------------------------|----------------| |
|
| notebook-siglip2-finetune-type1 | Train/Test Splits | [⬇️Download](https://huggingface.co/prithivMLmods/FineTuning-SigLIP2-Notebook/blob/main/Finetune-SigLIP2-Image-Classification/1.SigLIP2_Finetune_ImageClassification_TrainTest_Splits.ipynb) | |
|
| notebook-siglip2-finetune-type2 | Only Train Split | [⬇️Download](https://huggingface.co/prithivMLmods/FineTuning-SigLIP2-Notebook/blob/main/Finetune-SigLIP2-Image-Classification/2.SigLIP2_Finetune_ImageClassification_OnlyTrain_Splits.ipynb) | |
|
|
|
> [!warning] |
|
To avoid notebook loading errors, please download and use the notebook. |
|
--- |
|
|
|
The notebook outlines two data handling scenarios. In the first, datasets include predefined train and test splits, enabling conventional supervised learning and generalization evaluation. In the second scenario, only a training split is available; in such cases, the training set is either partially reserved for validation or reused entirely for evaluation. This flexibility supports experimentation in constrained or domain-specific settings, where standard test annotations may not exist. |
|
|
|
``` |
|
last updated : jul 2025 |
|
``` |
|
--- |
|
|
|
<div style=" |
|
background: rgba(255, 193, 61, 0.15); |
|
padding: 16px; |
|
border-radius: 6px; |
|
border: 1px solid rgba(255, 165, 0, 0.3); |
|
margin: 16px 0; |
|
"> |
|
|
|
|
|
| **Type 1: Train/Test Splits** | **Type 2: Only Train Split** | |
|
|------------------------------|------------------------------| |
|
|  |  | |
|
|
|
</div> |
|
|
|
--- |
|
|
|
| Platform | Link | |
|
|----------|------| |
|
| Huggingface Blog | [](https://huggingface.co/blog/prithivMLmods/siglip2-finetune-image-classification) | |
|
| GitHub Repository | [](https://github.com/PRITHIVSAKTHIUR/FineTuning-SigLIP-2) | |
|
|