|
--- |
|
license: mit |
|
datasets: |
|
- markury/AndroAtlas |
|
language: |
|
- en |
|
base_model: |
|
- google/paligemma-3b-mix-448 |
|
pipeline_tag: image-text-to-text |
|
tags: |
|
- captioning |
|
--- |
|
|
|
```python |
|
import torch |
|
from transformers import PaliGemmaForConditionalGeneration, PaliGemmaProcessor |
|
from PIL import Image |
|
|
|
def download_model(model_id): |
|
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id) |
|
processor = PaliGemmaProcessor.from_pretrained(model_id) |
|
return model, processor |
|
|
|
def infer(model, processor, image_path, text, max_new_tokens=128): |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
model = model.to(device) |
|
model.eval() |
|
|
|
image = Image.open(image_path) |
|
inputs = processor(text=text, images=image, return_tensors="pt").to(device) |
|
|
|
with torch.inference_mode(): |
|
generated_ids = model.generate( |
|
**inputs, |
|
max_new_tokens=max_new_tokens, |
|
do_sample=False |
|
) |
|
|
|
result = processor.batch_decode(generated_ids, skip_special_tokens=True) |
|
return result[0][len(text):].lstrip("\n") |
|
|
|
def main(): |
|
model_id = "prolapse/malensfw-paligemma-fp8_e5m2" |
|
model, processor = download_model(model_id) |
|
image_path = "/path/to/image.png" |
|
prompt = "describe this photo" |
|
result = infer(model, processor, image_path, prompt) |
|
print(result) |
|
|
|
if __name__ == "__main__": |
|
main() |
|
``` |