BERTopic-summcomparer-gauntlet-v0p1-all-roberta-large-v1-document_text
This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.
Usage
To use this model, please install BERTopic:
pip install -U bertopic safetensors
You can use the model as follows:
from bertopic import BERTopic
topic_model = BERTopic.load("pszemraj/BERTopic-summcomparer-gauntlet-v0p1-all-roberta-large-v1-document_text")
topic_model.get_topic_info()
Topic overview
- Number of topics: 17
 - Number of training documents: 995
 
Click here for an overview of all topics.
| Topic ID | Topic Keywords | Topic Frequency | Label | 
|---|---|---|---|
| -1 | clustering - convolutional - neural - hierarchical - autoregressive | 11 | -1_clustering_convolutional_neural_hierarchical | 
| 0 | betty - door - her - gillis - room | 15 | 0_betty_door_her_gillis | 
| 1 | frozen - anna - snow - hans - elsa | 241 | 1_frozen_anna_snow_hans | 
| 2 | closeup - shot - viewpoint - umpire - camera | 211 | 2_closeup_shot_viewpoint_umpire | 
| 3 | dory - gill - coral - marlin - ocean | 171 | 3_dory_gill_coral_marlin | 
| 4 | operations - structure - operation - theory - interpretation | 60 | 4_operations_structure_operation_theory | 
| 5 | spatial - identity - movement - identities - noir | 59 | 5_spatial_identity_movement_identities | 
| 6 | vocabulary - words - topic - text - topics | 45 | 6_vocabulary_words_topic_text | 
| 7 | encoder - captions - embeddings - decoder - caption | 40 | 7_encoder_captions_embeddings_decoder | 
| 8 | saw - hounds - smiled - had - hunt | 26 | 8_saw_hounds_smiled_had | 
| 9 | learning - assignment - data - research - project | 22 | 9_learning_assignment_data_research | 
| 10 | cogvideo - videos - videogpt - video - clips | 21 | 10_cogvideo_videos_videogpt_video | 
| 11 | lstm - recurrent - encoder - seq2seq - neural | 18 | 11_lstm_recurrent_encoder_seq2seq | 
| 12 | improve - next - do - going - good | 17 | 12_improve_next_do_going | 
| 13 | vocoding - spectrogram - enhancement - melspectrogram - audio | 14 | 13_vocoding_spectrogram_enhancement_melspectrogram | 
| 14 | probabilities - tagging - probability - words - gram | 12 | 14_probabilities_tagging_probability_words | 
| 15 | convolutional - segmentation - superpixel - convolutions - superpixels | 12 | 15_convolutional_segmentation_superpixel_convolutions | 
hierarchy
Training hyperparameters
- calculate_probabilities: True
 - language: None
 - low_memory: False
 - min_topic_size: 10
 - n_gram_range: (1, 1)
 - nr_topics: None
 - seed_topic_list: None
 - top_n_words: 10
 - verbose: True
 
Framework versions
- Numpy: 1.22.4
 - HDBSCAN: 0.8.29
 - UMAP: 0.5.3
 - Pandas: 1.5.3
 - Scikit-Learn: 1.2.2
 - Sentence-transformers: 2.2.2
 - Transformers: 4.29.2
 - Numba: 0.56.4
 - Plotly: 5.13.1
 - Python: 3.10.11
 
- Downloads last month
 - 2
 

