ptkag1712's picture
Update README.md
7013ce5 verified
metadata
library_name: transformers
tags:
  - text-generation
  - paraphrase
  - gpt2
  - causal-lm
  - transformers
  - pytorch
license: mit
datasets:
  - HHousen/ParaSCI
language:
  - en
base_model:
  - openai-community/gpt2
pipeline_tag: text-generation

Model Card for gpt2-parasciparaphrase

🧠 Model Summary

This model is a fine-tuned version of GPT-2 on the ParaSCI dataset for paraphrase generation. It takes a sentence as input and generates a paraphrased version of that sentence.


📋 Model Details

  • Base model: GPT-2 (gpt2)
  • Task: Paraphrase generation (Causal Language Modeling)
  • Language: English
  • Training data: HHousen/ParaSCI
  • Training steps: 1 epoch on ~270k examples
  • Precision: fp16 mixed precision
  • Hardware used: Tesla T4 (Kaggle Notebook GPU)
  • Framework: 🤗 Transformers, PyTorch
  • Trained by: [Your Name or HF Username]
  • License: MIT

💡 Intended Use

✅ Direct Use

  • Generate paraphrased versions of input English sentences in a general academic/technical writing context.

🚫 Out-of-Scope Use

  • Not suitable for paraphrasing code, informal language, or other languages (non-English).
  • Not tested for fairness, bias, or ethical use in downstream applications.

📊 Evaluation

  • Qualitative Evaluation: Manual checks indicate coherent paraphrased outputs.
  • Automatic Metrics: Not yet reported.

🛠 Training Details

  • Dataset: ParaSCI (sentence1sentence2)
  • Preprocessing: Concatenated prompt paraphrase this sentence: {sentence1}\n{sentence2}
  • Tokenizer: GPT-2 tokenizer with pad_token = eos_token
  • Batch size: 8
  • Epochs: 1
  • Learning rate: 5e-5
  • Logging and checkpointing: Every 500 steps, using Weights & Biases (wandb)
  • Max sequence length: 256 tokens

🏁 How to Use

from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("your-username/gpt2-parasciparaphrase")
tokenizer = AutoTokenizer.from_pretrained("your-username/gpt2-parasciparaphrase")

input_text = "paraphrase this sentence: AI models can help in automating tasks.\n"
input_ids = tokenizer.encode(input_text, return_tensors="pt")

output = model.generate(input_ids, max_new_tokens=50, do_sample=True, top_k=50, top_p=0.95)
print(tokenizer.decode(output[0], skip_special_tokens=True))