SikuBERT Parallel Couplet Classifier (五言对联平行性分类器)
A fine-tuned BERT model for detecting parallelism in classical Chinese couplets (五言对联), based on SIKU-BERT/sikubert.
Model Description
- Architecture:
SIKU-BERT/sikubertfine-tuned for sequence classification - Task: Binary classification (parallel vs non-parallel couplets)
- Labels:
parallel(对仗工整)non-parallel(非对仗)
Usage
Direct Classification with Pipeline
from transformers import pipeline
# Load the classification pipeline
classifier = pipeline(
"text-classification",
model="qhchina/SikuBERT-parallelism-wuyan-0.1",
tokenizer="qhchina/SikuBERT-parallelism-wuyan-0.1"
)
# Example parallel couplet
parallel_couplet = "感时花溅泪,恨别鸟惊心"
# Classify the example
result = classifier(parallel_couplet)
print("Classification result:")
print(f"Text: {parallel_couplet}")
print(f"Label: {result[0]['label']}")
print(f"Score: {result[0]['score']:.4f}")
# Text: 感时花溅泪,恨别鸟惊心
# Label: parallel
# Score: 0.9920
# Example non-parallel couplet
non_parallel_couplet = "看花随节序,不敢强为容"
# Classify the example
result = classifier(non_parallel_couplet)
print("Classification result:")
print(f"Text: {non_parallel_couplet}")
print(f"Label: {result[0]['label']}")
print(f"Score: {result[0]['score']:.4f}")
# Text: 看花随节序,不敢强为容
# Label: non-parallel
# Score: 0.9953
- Downloads last month
- 32
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support