MobileSam: Optimized for Mobile Deployment

Faster Segment Anything: Towards lightweight SAM for mobile applications

Transformer based encoder-decoder where prompts specify what to segment in an image thereby allowing segmentation without the need for additional training. The image encoder generates embeddings and the lightweight decoder operates on the embeddings for point and mask based image segmentation.

This model is an implementation of MobileSam found here.

This repository provides scripts to run MobileSam on Qualcomm® devices. More details on model performance across various devices, can be found here.

Model Details

  • Model Type: Model_use_case.semantic_segmentation
  • Model Stats:
    • Model checkpoint: vit_t
    • Input resolution: 720p (720x1280)
    • Number of parameters (SAMEncoder): 6.95M
    • Model size (SAMEncoder) (float): 26.6 MB
    • Number of parameters (SAMDecoder): 6.16M
    • Model size (SAMDecoder) (float): 23.7 MB
Model Precision Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Primary Compute Unit Target Model
MobileSAMEncoder float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) TFLITE 324.82 ms 4 - 534 MB NPU MobileSam.tflite
MobileSAMEncoder float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN_DLC 196.849 ms 1 - 959 MB NPU MobileSam.dlc
MobileSAMEncoder float QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) TFLITE 516.813 ms 0 - 1844 MB NPU MobileSam.tflite
MobileSAMEncoder float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) TFLITE 199.181 ms 4 - 85 MB NPU MobileSam.tflite
MobileSAMEncoder float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_DLC 91.65 ms 12 - 85 MB NPU MobileSam.dlc
MobileSAMEncoder float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) ONNX 390.022 ms 113 - 143 MB NPU MobileSam.onnx.zip
MobileSAMEncoder float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) TFLITE 198.64 ms 4 - 533 MB NPU MobileSam.tflite
MobileSAMEncoder float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_DLC 97.132 ms 0 - 918 MB NPU MobileSam.dlc
MobileSAMEncoder float SA7255P ADP Qualcomm® SA7255P TFLITE 324.82 ms 4 - 534 MB NPU MobileSam.tflite
MobileSAMEncoder float SA7255P ADP Qualcomm® SA7255P QNN_DLC 196.849 ms 1 - 959 MB NPU MobileSam.dlc
MobileSAMEncoder float SA8255 (Proxy) Qualcomm® SA8255P (Proxy) TFLITE 199.316 ms 4 - 82 MB NPU MobileSam.tflite
MobileSAMEncoder float SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN_DLC 91.506 ms 12 - 93 MB NPU MobileSam.dlc
MobileSAMEncoder float SA8295P ADP Qualcomm® SA8295P TFLITE 560.32 ms 4 - 1119 MB NPU MobileSam.tflite
MobileSAMEncoder float SA8650 (Proxy) Qualcomm® SA8650P (Proxy) TFLITE 198.428 ms 4 - 61 MB NPU MobileSam.tflite
MobileSAMEncoder float SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN_DLC 91.621 ms 12 - 88 MB NPU MobileSam.dlc
MobileSAMEncoder float SA8775P ADP Qualcomm® SA8775P TFLITE 198.64 ms 4 - 533 MB NPU MobileSam.tflite
MobileSAMEncoder float SA8775P ADP Qualcomm® SA8775P QNN_DLC 97.132 ms 0 - 918 MB NPU MobileSam.dlc
MobileSAMEncoder float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile TFLITE 140.04 ms 0 - 527 MB NPU MobileSam.tflite
MobileSAMEncoder float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_DLC 62.72 ms 12 - 2272 MB NPU MobileSam.dlc
MobileSAMEncoder float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile ONNX 294.814 ms 119 - 267 MB NPU MobileSam.onnx.zip
MobileSAMEncoder float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile TFLITE 109.092 ms 3 - 531 MB NPU MobileSam.tflite
MobileSAMEncoder float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile QNN_DLC 47.658 ms 0 - 893 MB NPU MobileSam.dlc
MobileSAMEncoder float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile ONNX 209.088 ms 111 - 484 MB NPU MobileSam.onnx.zip
MobileSAMEncoder float Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile TFLITE 92.971 ms 0 - 520 MB NPU MobileSam.tflite
MobileSAMEncoder float Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile QNN_DLC 42.84 ms 12 - 961 MB NPU MobileSam.dlc
MobileSAMEncoder float Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile ONNX 174.36 ms 125 - 388 MB NPU MobileSam.onnx.zip
MobileSAMEncoder float Snapdragon X Elite CRD Snapdragon® X Elite QNN_DLC 99.328 ms 1149 - 1149 MB NPU MobileSam.dlc
MobileSAMEncoder float Snapdragon X Elite CRD Snapdragon® X Elite ONNX 403.806 ms 131 - 131 MB NPU MobileSam.onnx.zip
MobileSAMDecoder float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) TFLITE 16.554 ms 0 - 50 MB NPU MobileSam.tflite
MobileSAMDecoder float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN_DLC 13.624 ms 2 - 141 MB NPU MobileSam.dlc
MobileSAMDecoder float QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) TFLITE 8.446 ms 0 - 55 MB NPU MobileSam.tflite
MobileSAMDecoder float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) TFLITE 7.242 ms 0 - 31 MB NPU MobileSam.tflite
MobileSAMDecoder float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_DLC 5.923 ms 4 - 23 MB NPU MobileSam.dlc
MobileSAMDecoder float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) ONNX 8.364 ms 0 - 51 MB NPU MobileSam.onnx.zip
MobileSAMDecoder float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) TFLITE 8.413 ms 0 - 48 MB NPU MobileSam.tflite
MobileSAMDecoder float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_DLC 6.993 ms 2 - 141 MB NPU MobileSam.dlc
MobileSAMDecoder float SA7255P ADP Qualcomm® SA7255P TFLITE 16.554 ms 0 - 50 MB NPU MobileSam.tflite
MobileSAMDecoder float SA7255P ADP Qualcomm® SA7255P QNN_DLC 13.624 ms 2 - 141 MB NPU MobileSam.dlc
MobileSAMDecoder float SA8255 (Proxy) Qualcomm® SA8255P (Proxy) TFLITE 7.277 ms 0 - 30 MB NPU MobileSam.tflite
MobileSAMDecoder float SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN_DLC 5.926 ms 3 - 25 MB NPU MobileSam.dlc
MobileSAMDecoder float SA8295P ADP Qualcomm® SA8295P TFLITE 9.778 ms 0 - 53 MB NPU MobileSam.tflite
MobileSAMDecoder float SA8650 (Proxy) Qualcomm® SA8650P (Proxy) TFLITE 7.262 ms 0 - 30 MB NPU MobileSam.tflite
MobileSAMDecoder float SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN_DLC 5.925 ms 4 - 38 MB NPU MobileSam.dlc
MobileSAMDecoder float SA8775P ADP Qualcomm® SA8775P TFLITE 8.413 ms 0 - 48 MB NPU MobileSam.tflite
MobileSAMDecoder float SA8775P ADP Qualcomm® SA8775P QNN_DLC 6.993 ms 2 - 141 MB NPU MobileSam.dlc
MobileSAMDecoder float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile TFLITE 5.154 ms 0 - 56 MB NPU MobileSam.tflite
MobileSAMDecoder float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_DLC 4.058 ms 4 - 160 MB NPU MobileSam.dlc
MobileSAMDecoder float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile ONNX 5.681 ms 4 - 137 MB NPU MobileSam.onnx.zip
MobileSAMDecoder float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile TFLITE 3.975 ms 0 - 54 MB NPU MobileSam.tflite
MobileSAMDecoder float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile QNN_DLC 3.048 ms 4 - 135 MB NPU MobileSam.dlc
MobileSAMDecoder float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile ONNX 4.248 ms 2 - 75 MB NPU MobileSam.onnx.zip
MobileSAMDecoder float Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile TFLITE 3.516 ms 0 - 49 MB NPU MobileSam.tflite
MobileSAMDecoder float Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile QNN_DLC 2.598 ms 4 - 56 MB NPU MobileSam.dlc
MobileSAMDecoder float Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile ONNX 3.561 ms 4 - 83 MB NPU MobileSam.onnx.zip
MobileSAMDecoder float Snapdragon X Elite CRD Snapdragon® X Elite QNN_DLC 6.421 ms 57 - 57 MB NPU MobileSam.dlc
MobileSAMDecoder float Snapdragon X Elite CRD Snapdragon® X Elite ONNX 8.734 ms 11 - 11 MB NPU MobileSam.onnx.zip

Installation

Install the package via pip:

pip install "qai-hub-models[mobilesam]"

Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to Qualcomm® AI Hub with your Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.

With this API token, you can configure your client to run models on the cloud hosted devices.

qai-hub configure --api_token API_TOKEN

Navigate to docs for more information.

Demo off target

The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.

python -m qai_hub_models.models.mobilesam.demo

The above demo runs a reference implementation of pre-processing, model inference, and post processing.

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.mobilesam.demo

Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:

  • Performance check on-device on a cloud-hosted device
  • Downloads compiled assets that can be deployed on-device for Android.
  • Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.mobilesam.export

How does this work?

This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:

Step 1: Compile model for on-device deployment

To compile a PyTorch model for on-device deployment, we first trace the model in memory using the jit.trace and then call the submit_compile_job API.

import torch

import qai_hub as hub
from qai_hub_models.models.mobilesam import Model

# Load the model
torch_model = Model.from_pretrained()

# Device
device = hub.Device("Samsung Galaxy S25")

# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()

pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])

# Compile model on a specific device
compile_job = hub.submit_compile_job(
    model=pt_model,
    device=device,
    input_specs=torch_model.get_input_spec(),
)

# Get target model to run on-device
target_model = compile_job.get_target_model()

Step 2: Performance profiling on cloud-hosted device

After compiling models from step 1. Models can be profiled model on-device using the target_model. Note that this scripts runs the model on a device automatically provisioned in the cloud. Once the job is submitted, you can navigate to a provided job URL to view a variety of on-device performance metrics.

profile_job = hub.submit_profile_job(
    model=target_model,
    device=device,
)
        

Step 3: Verify on-device accuracy

To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.

input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
    model=target_model,
    device=device,
    inputs=input_data,
)
    on_device_output = inference_job.download_output_data()

With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.

Note: This on-device profiling and inference requires access to Qualcomm® AI Hub. Sign up for access.

Run demo on a cloud-hosted device

You can also run the demo on-device.

python -m qai_hub_models.models.mobilesam.demo --eval-mode on-device

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.mobilesam.demo -- --eval-mode on-device

Deploying compiled model to Android

The models can be deployed using multiple runtimes:

  • TensorFlow Lite (.tflite export): This tutorial provides a guide to deploy the .tflite model in an Android application.

  • QNN (.so export ): This sample app provides instructions on how to use the .so shared library in an Android application.

View on Qualcomm® AI Hub

Get more details on MobileSam's performance across various devices here. Explore all available models on Qualcomm® AI Hub

License

  • The license for the original implementation of MobileSam can be found here.
  • The license for the compiled assets for on-device deployment can be found here

References

Community

Downloads last month
330
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support