Real-ESRGAN-General-x4v3: Optimized for Mobile Deployment

Upscale images and remove image noise

Real-ESRGAN is a machine learning model that upscales an image with minimal loss in quality.

This model is an implementation of Real-ESRGAN-General-x4v3 found here.

This repository provides scripts to run Real-ESRGAN-General-x4v3 on Qualcomm® devices. More details on model performance across various devices, can be found here.

Model Details

  • Model Type: Model_use_case.super_resolution
  • Model Stats:
    • Model checkpoint: realesr-general-x4v3
    • Input resolution: 128x128
    • Number of parameters: 1.21M
    • Model size (float): 4.65 MB
    • Model size (w8a8): 1.25 MB
Model Precision Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Primary Compute Unit Target Model
Real-ESRGAN-General-x4v3 float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) TFLITE 37.351 ms 9 - 32 MB NPU Real-ESRGAN-General-x4v3.tflite
Real-ESRGAN-General-x4v3 float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN_DLC 32.014 ms 0 - 24 MB NPU Real-ESRGAN-General-x4v3.dlc
Real-ESRGAN-General-x4v3 float QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) TFLITE 10.684 ms 9 - 50 MB NPU Real-ESRGAN-General-x4v3.tflite
Real-ESRGAN-General-x4v3 float QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) QNN_DLC 8.922 ms 0 - 40 MB NPU Real-ESRGAN-General-x4v3.dlc
Real-ESRGAN-General-x4v3 float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) TFLITE 7.035 ms 9 - 17 MB NPU Real-ESRGAN-General-x4v3.tflite
Real-ESRGAN-General-x4v3 float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_DLC 5.419 ms 0 - 10 MB NPU Real-ESRGAN-General-x4v3.dlc
Real-ESRGAN-General-x4v3 float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) TFLITE 11.446 ms 9 - 33 MB NPU Real-ESRGAN-General-x4v3.tflite
Real-ESRGAN-General-x4v3 float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_DLC 8.818 ms 0 - 24 MB NPU Real-ESRGAN-General-x4v3.dlc
Real-ESRGAN-General-x4v3 float SA7255P ADP Qualcomm® SA7255P TFLITE 37.351 ms 9 - 32 MB NPU Real-ESRGAN-General-x4v3.tflite
Real-ESRGAN-General-x4v3 float SA7255P ADP Qualcomm® SA7255P QNN_DLC 32.014 ms 0 - 24 MB NPU Real-ESRGAN-General-x4v3.dlc
Real-ESRGAN-General-x4v3 float SA8255 (Proxy) Qualcomm® SA8255P (Proxy) TFLITE 7.061 ms 9 - 16 MB NPU Real-ESRGAN-General-x4v3.tflite
Real-ESRGAN-General-x4v3 float SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN_DLC 5.443 ms 0 - 11 MB NPU Real-ESRGAN-General-x4v3.dlc
Real-ESRGAN-General-x4v3 float SA8295P ADP Qualcomm® SA8295P TFLITE 13.442 ms 9 - 38 MB NPU Real-ESRGAN-General-x4v3.tflite
Real-ESRGAN-General-x4v3 float SA8295P ADP Qualcomm® SA8295P QNN_DLC 9.764 ms 0 - 29 MB NPU Real-ESRGAN-General-x4v3.dlc
Real-ESRGAN-General-x4v3 float SA8650 (Proxy) Qualcomm® SA8650P (Proxy) TFLITE 7.352 ms 9 - 17 MB NPU Real-ESRGAN-General-x4v3.tflite
Real-ESRGAN-General-x4v3 float SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN_DLC 5.452 ms 0 - 10 MB NPU Real-ESRGAN-General-x4v3.dlc
Real-ESRGAN-General-x4v3 float SA8775P ADP Qualcomm® SA8775P TFLITE 11.446 ms 9 - 33 MB NPU Real-ESRGAN-General-x4v3.tflite
Real-ESRGAN-General-x4v3 float SA8775P ADP Qualcomm® SA8775P QNN_DLC 8.818 ms 0 - 24 MB NPU Real-ESRGAN-General-x4v3.dlc
Real-ESRGAN-General-x4v3 float Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile TFLITE 7.108 ms 8 - 16 MB NPU Real-ESRGAN-General-x4v3.tflite
Real-ESRGAN-General-x4v3 float Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile QNN_DLC 5.439 ms 0 - 11 MB NPU Real-ESRGAN-General-x4v3.dlc
Real-ESRGAN-General-x4v3 float Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile ONNX 6.465 ms 6 - 24 MB NPU Real-ESRGAN-General-x4v3.onnx
Real-ESRGAN-General-x4v3 float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile TFLITE 5.323 ms 9 - 52 MB NPU Real-ESRGAN-General-x4v3.tflite
Real-ESRGAN-General-x4v3 float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_DLC 3.922 ms 0 - 37 MB NPU Real-ESRGAN-General-x4v3.dlc
Real-ESRGAN-General-x4v3 float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile ONNX 4.68 ms 0 - 50 MB NPU Real-ESRGAN-General-x4v3.onnx
Real-ESRGAN-General-x4v3 float Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile TFLITE 4.965 ms 9 - 35 MB NPU Real-ESRGAN-General-x4v3.tflite
Real-ESRGAN-General-x4v3 float Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile QNN_DLC 3.906 ms 0 - 32 MB NPU Real-ESRGAN-General-x4v3.dlc
Real-ESRGAN-General-x4v3 float Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile ONNX 4.387 ms 0 - 28 MB NPU Real-ESRGAN-General-x4v3.onnx
Real-ESRGAN-General-x4v3 float Snapdragon X Elite CRD Snapdragon® X Elite QNN_DLC 6.298 ms 0 - 0 MB NPU Real-ESRGAN-General-x4v3.dlc
Real-ESRGAN-General-x4v3 float Snapdragon X Elite CRD Snapdragon® X Elite ONNX 6.452 ms 6 - 6 MB NPU Real-ESRGAN-General-x4v3.onnx
Real-ESRGAN-General-x4v3 w8a8 QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) TFLITE 9.078 ms 2 - 23 MB NPU Real-ESRGAN-General-x4v3.tflite
Real-ESRGAN-General-x4v3 w8a8 QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN_DLC 5.588 ms 0 - 23 MB NPU Real-ESRGAN-General-x4v3.dlc
Real-ESRGAN-General-x4v3 w8a8 QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) TFLITE 4.977 ms 0 - 34 MB NPU Real-ESRGAN-General-x4v3.tflite
Real-ESRGAN-General-x4v3 w8a8 QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) QNN_DLC 2.984 ms 0 - 35 MB NPU Real-ESRGAN-General-x4v3.dlc
Real-ESRGAN-General-x4v3 w8a8 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) TFLITE 2.494 ms 0 - 9 MB NPU Real-ESRGAN-General-x4v3.tflite
Real-ESRGAN-General-x4v3 w8a8 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_DLC 1.765 ms 0 - 8 MB NPU Real-ESRGAN-General-x4v3.dlc
Real-ESRGAN-General-x4v3 w8a8 QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) TFLITE 3.366 ms 0 - 22 MB NPU Real-ESRGAN-General-x4v3.tflite
Real-ESRGAN-General-x4v3 w8a8 QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_DLC 2.037 ms 0 - 24 MB NPU Real-ESRGAN-General-x4v3.dlc
Real-ESRGAN-General-x4v3 w8a8 RB3 Gen 2 (Proxy) Qualcomm® QCS6490 (Proxy) TFLITE 10.317 ms 0 - 24 MB NPU Real-ESRGAN-General-x4v3.tflite
Real-ESRGAN-General-x4v3 w8a8 RB3 Gen 2 (Proxy) Qualcomm® QCS6490 (Proxy) QNN_DLC 7.657 ms 0 - 26 MB NPU Real-ESRGAN-General-x4v3.dlc
Real-ESRGAN-General-x4v3 w8a8 RB5 (Proxy) Qualcomm® QCS8250 (Proxy) TFLITE 36.509 ms 2 - 5 MB NPU Real-ESRGAN-General-x4v3.tflite
Real-ESRGAN-General-x4v3 w8a8 SA7255P ADP Qualcomm® SA7255P TFLITE 9.078 ms 2 - 23 MB NPU Real-ESRGAN-General-x4v3.tflite
Real-ESRGAN-General-x4v3 w8a8 SA7255P ADP Qualcomm® SA7255P QNN_DLC 5.588 ms 0 - 23 MB NPU Real-ESRGAN-General-x4v3.dlc
Real-ESRGAN-General-x4v3 w8a8 SA8255 (Proxy) Qualcomm® SA8255P (Proxy) TFLITE 2.446 ms 0 - 9 MB NPU Real-ESRGAN-General-x4v3.tflite
Real-ESRGAN-General-x4v3 w8a8 SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN_DLC 1.755 ms 0 - 8 MB NPU Real-ESRGAN-General-x4v3.dlc
Real-ESRGAN-General-x4v3 w8a8 SA8295P ADP Qualcomm® SA8295P TFLITE 4.271 ms 0 - 26 MB NPU Real-ESRGAN-General-x4v3.tflite
Real-ESRGAN-General-x4v3 w8a8 SA8295P ADP Qualcomm® SA8295P QNN_DLC 3.27 ms 0 - 26 MB NPU Real-ESRGAN-General-x4v3.dlc
Real-ESRGAN-General-x4v3 w8a8 SA8650 (Proxy) Qualcomm® SA8650P (Proxy) TFLITE 2.485 ms 0 - 10 MB NPU Real-ESRGAN-General-x4v3.tflite
Real-ESRGAN-General-x4v3 w8a8 SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN_DLC 1.756 ms 0 - 8 MB NPU Real-ESRGAN-General-x4v3.dlc
Real-ESRGAN-General-x4v3 w8a8 SA8775P ADP Qualcomm® SA8775P TFLITE 3.366 ms 0 - 22 MB NPU Real-ESRGAN-General-x4v3.tflite
Real-ESRGAN-General-x4v3 w8a8 SA8775P ADP Qualcomm® SA8775P QNN_DLC 2.037 ms 0 - 24 MB NPU Real-ESRGAN-General-x4v3.dlc
Real-ESRGAN-General-x4v3 w8a8 Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile TFLITE 2.457 ms 0 - 7 MB NPU Real-ESRGAN-General-x4v3.tflite
Real-ESRGAN-General-x4v3 w8a8 Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile QNN_DLC 1.766 ms 0 - 8 MB NPU Real-ESRGAN-General-x4v3.dlc
Real-ESRGAN-General-x4v3 w8a8 Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile ONNX 1.897 ms 0 - 10 MB NPU Real-ESRGAN-General-x4v3.onnx
Real-ESRGAN-General-x4v3 w8a8 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile TFLITE 1.914 ms 0 - 35 MB NPU Real-ESRGAN-General-x4v3.tflite
Real-ESRGAN-General-x4v3 w8a8 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_DLC 1.24 ms 0 - 34 MB NPU Real-ESRGAN-General-x4v3.dlc
Real-ESRGAN-General-x4v3 w8a8 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile ONNX 1.326 ms 0 - 38 MB NPU Real-ESRGAN-General-x4v3.onnx
Real-ESRGAN-General-x4v3 w8a8 Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile TFLITE 2.155 ms 0 - 28 MB NPU Real-ESRGAN-General-x4v3.tflite
Real-ESRGAN-General-x4v3 w8a8 Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile QNN_DLC 1.054 ms 0 - 23 MB NPU Real-ESRGAN-General-x4v3.dlc
Real-ESRGAN-General-x4v3 w8a8 Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile ONNX 1.253 ms 1 - 30 MB NPU Real-ESRGAN-General-x4v3.onnx
Real-ESRGAN-General-x4v3 w8a8 Snapdragon X Elite CRD Snapdragon® X Elite QNN_DLC 2.074 ms 0 - 0 MB NPU Real-ESRGAN-General-x4v3.dlc
Real-ESRGAN-General-x4v3 w8a8 Snapdragon X Elite CRD Snapdragon® X Elite ONNX 2.008 ms 2 - 2 MB NPU Real-ESRGAN-General-x4v3.onnx

Installation

Install the package via pip:

pip install "qai-hub-models[real-esrgan-general-x4v3]"

Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to Qualcomm® AI Hub with your Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.

With this API token, you can configure your client to run models on the cloud hosted devices.

qai-hub configure --api_token API_TOKEN

Navigate to docs for more information.

Demo off target

The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.

python -m qai_hub_models.models.real_esrgan_general_x4v3.demo

The above demo runs a reference implementation of pre-processing, model inference, and post processing.

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.real_esrgan_general_x4v3.demo

Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:

  • Performance check on-device on a cloud-hosted device
  • Downloads compiled assets that can be deployed on-device for Android.
  • Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.real_esrgan_general_x4v3.export
Profiling Results
------------------------------------------------------------
Real-ESRGAN-General-x4v3
Device                          : cs_8275 (ANDROID 14)                
Runtime                         : TFLITE                              
Estimated inference time (ms)   : 37.4                                
Estimated peak memory usage (MB): [9, 32]                             
Total # Ops                     : 72                                  
Compute Unit(s)                 : npu (69 ops) gpu (0 ops) cpu (3 ops)

How does this work?

This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:

Step 1: Compile model for on-device deployment

To compile a PyTorch model for on-device deployment, we first trace the model in memory using the jit.trace and then call the submit_compile_job API.

import torch

import qai_hub as hub
from qai_hub_models.models.real_esrgan_general_x4v3 import Model

# Load the model
torch_model = Model.from_pretrained()

# Device
device = hub.Device("Samsung Galaxy S24")

# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()

pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])

# Compile model on a specific device
compile_job = hub.submit_compile_job(
    model=pt_model,
    device=device,
    input_specs=torch_model.get_input_spec(),
)

# Get target model to run on-device
target_model = compile_job.get_target_model()

Step 2: Performance profiling on cloud-hosted device

After compiling models from step 1. Models can be profiled model on-device using the target_model. Note that this scripts runs the model on a device automatically provisioned in the cloud. Once the job is submitted, you can navigate to a provided job URL to view a variety of on-device performance metrics.

profile_job = hub.submit_profile_job(
    model=target_model,
    device=device,
)
        

Step 3: Verify on-device accuracy

To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.

input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
    model=target_model,
    device=device,
    inputs=input_data,
)
    on_device_output = inference_job.download_output_data()

With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.

Note: This on-device profiling and inference requires access to Qualcomm® AI Hub. Sign up for access.

Run demo on a cloud-hosted device

You can also run the demo on-device.

python -m qai_hub_models.models.real_esrgan_general_x4v3.demo --eval-mode on-device

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.real_esrgan_general_x4v3.demo -- --eval-mode on-device

Deploying compiled model to Android

The models can be deployed using multiple runtimes:

  • TensorFlow Lite (.tflite export): This tutorial provides a guide to deploy the .tflite model in an Android application.

  • QNN (.so export ): This sample app provides instructions on how to use the .so shared library in an Android application.

View on Qualcomm® AI Hub

Get more details on Real-ESRGAN-General-x4v3's performance across various devices here. Explore all available models on Qualcomm® AI Hub

License

  • The license for the original implementation of Real-ESRGAN-General-x4v3 can be found here.
  • The license for the compiled assets for on-device deployment can be found here

References

Community

Downloads last month
102
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support