VIT: Optimized for Mobile Deployment
Imagenet classifier and general purpose backbone
VIT is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases.
This model is an implementation of VIT found here.
This repository provides scripts to run VIT on Qualcomm® devices. More details on model performance across various devices, can be found here.
Model Details
- Model Type: Model_use_case.image_classification
- Model Stats:
- Model checkpoint: Imagenet
- Input resolution: 224x224
- Number of parameters: 86.6M
- Model size (float): 330 MB
- Model size (w8a16): 86.2 MB
- Model size (w8a8): 83.2 MB
| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model |
|---|---|---|---|---|---|---|---|---|
| VIT | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 37.327 ms | 0 - 304 MB | NPU | VIT.tflite |
| VIT | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 40.725 ms | 0 - 302 MB | NPU | VIT.dlc |
| VIT | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 13.034 ms | 0 - 317 MB | NPU | VIT.tflite |
| VIT | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 19.296 ms | 1 - 303 MB | NPU | VIT.dlc |
| VIT | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 8.93 ms | 0 - 14 MB | NPU | VIT.tflite |
| VIT | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 11.473 ms | 0 - 24 MB | NPU | VIT.dlc |
| VIT | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | ONNX | 13.27 ms | 1 - 28 MB | NPU | VIT.onnx.zip |
| VIT | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 11.819 ms | 0 - 304 MB | NPU | VIT.tflite |
| VIT | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 14.398 ms | 1 - 302 MB | NPU | VIT.dlc |
| VIT | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 37.327 ms | 0 - 304 MB | NPU | VIT.tflite |
| VIT | float | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 40.725 ms | 0 - 302 MB | NPU | VIT.dlc |
| VIT | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 8.592 ms | 0 - 19 MB | NPU | VIT.tflite |
| VIT | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 11.459 ms | 0 - 21 MB | NPU | VIT.dlc |
| VIT | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 14.687 ms | 0 - 306 MB | NPU | VIT.tflite |
| VIT | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 17.28 ms | 1 - 306 MB | NPU | VIT.dlc |
| VIT | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 8.556 ms | 0 - 27 MB | NPU | VIT.tflite |
| VIT | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 11.473 ms | 0 - 22 MB | NPU | VIT.dlc |
| VIT | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 11.819 ms | 0 - 304 MB | NPU | VIT.tflite |
| VIT | float | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 14.398 ms | 1 - 302 MB | NPU | VIT.dlc |
| VIT | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 6.272 ms | 0 - 310 MB | NPU | VIT.tflite |
| VIT | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 8.04 ms | 1 - 313 MB | NPU | VIT.dlc |
| VIT | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 9.08 ms | 0 - 331 MB | NPU | VIT.onnx.zip |
| VIT | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | TFLITE | 4.443 ms | 0 - 308 MB | NPU | VIT.tflite |
| VIT | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 5.671 ms | 1 - 313 MB | NPU | VIT.dlc |
| VIT | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | ONNX | 6.364 ms | 1 - 325 MB | NPU | VIT.onnx.zip |
| VIT | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | TFLITE | 3.795 ms | 0 - 308 MB | NPU | VIT.tflite |
| VIT | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_DLC | 4.348 ms | 1 - 304 MB | NPU | VIT.dlc |
| VIT | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | ONNX | 4.856 ms | 1 - 317 MB | NPU | VIT.onnx.zip |
| VIT | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 12.189 ms | 1126 - 1126 MB | NPU | VIT.dlc |
| VIT | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 13.866 ms | 171 - 171 MB | NPU | VIT.onnx.zip |
| VIT | w8a16 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 69.629 ms | 0 - 195 MB | NPU | VIT.dlc |
| VIT | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 26.732 ms | 3 - 47 MB | NPU | VIT.dlc |
| VIT | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | ONNX | 314.345 ms | 32 - 121 MB | NPU | VIT.onnx.zip |
| VIT | w8a16 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 24.548 ms | 0 - 188 MB | NPU | VIT.dlc |
| VIT | w8a16 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | ONNX | 524.615 ms | 82 - 100 MB | CPU | VIT.onnx.zip |
| VIT | w8a16 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | ONNX | 548.251 ms | 84 - 100 MB | CPU | VIT.onnx.zip |
| VIT | w8a16 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 69.629 ms | 0 - 195 MB | NPU | VIT.dlc |
| VIT | w8a16 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 26.687 ms | 0 - 44 MB | NPU | VIT.dlc |
| VIT | w8a16 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 26.727 ms | 0 - 46 MB | NPU | VIT.dlc |
| VIT | w8a16 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 24.548 ms | 0 - 188 MB | NPU | VIT.dlc |
| VIT | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 20.318 ms | 0 - 200 MB | NPU | VIT.dlc |
| VIT | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 266.191 ms | 55 - 92 MB | NPU | VIT.onnx.zip |
| VIT | w8a16 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 15.988 ms | 0 - 190 MB | NPU | VIT.dlc |
| VIT | w8a16 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | ONNX | 230.044 ms | 55 - 95 MB | NPU | VIT.onnx.zip |
| VIT | w8a16 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_DLC | 12.942 ms | 0 - 194 MB | NPU | VIT.dlc |
| VIT | w8a16 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | ONNX | 204.577 ms | 53 - 96 MB | NPU | VIT.onnx.zip |
| VIT | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 26.526 ms | 309 - 309 MB | NPU | VIT.dlc |
| VIT | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 169.231 ms | 62 - 62 MB | NPU | VIT.onnx.zip |
| VIT | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 15.527 ms | 0 - 46 MB | NPU | VIT.tflite |
| VIT | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 29.908 ms | 0 - 150 MB | NPU | VIT.dlc |
| VIT | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 8.157 ms | 0 - 54 MB | NPU | VIT.tflite |
| VIT | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 13.244 ms | 0 - 268 MB | NPU | VIT.dlc |
| VIT | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 7.441 ms | 0 - 22 MB | NPU | VIT.tflite |
| VIT | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 10.195 ms | 0 - 23 MB | NPU | VIT.dlc |
| VIT | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | ONNX | 288.901 ms | 32 - 121 MB | NPU | VIT.onnx.zip |
| VIT | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 35.33 ms | 0 - 46 MB | NPU | VIT.tflite |
| VIT | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 9.538 ms | 0 - 150 MB | NPU | VIT.dlc |
| VIT | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | TFLITE | 89.098 ms | 2 - 45 MB | NPU | VIT.tflite |
| VIT | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN_DLC | 77.03 ms | 0 - 656 MB | NPU | VIT.dlc |
| VIT | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | ONNX | 434.397 ms | 66 - 83 MB | CPU | VIT.onnx.zip |
| VIT | w8a8 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | ONNX | 482.665 ms | 72 - 84 MB | CPU | VIT.onnx.zip |
| VIT | w8a8 | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 15.527 ms | 0 - 46 MB | NPU | VIT.tflite |
| VIT | w8a8 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 29.908 ms | 0 - 150 MB | NPU | VIT.dlc |
| VIT | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 7.515 ms | 0 - 105 MB | NPU | VIT.tflite |
| VIT | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 10.218 ms | 0 - 22 MB | NPU | VIT.dlc |
| VIT | w8a8 | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 9.774 ms | 0 - 48 MB | NPU | VIT.tflite |
| VIT | w8a8 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 16.411 ms | 0 - 164 MB | NPU | VIT.dlc |
| VIT | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 7.444 ms | 0 - 25 MB | NPU | VIT.tflite |
| VIT | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 10.233 ms | 0 - 23 MB | NPU | VIT.dlc |
| VIT | w8a8 | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 35.33 ms | 0 - 46 MB | NPU | VIT.tflite |
| VIT | w8a8 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 9.538 ms | 0 - 150 MB | NPU | VIT.dlc |
| VIT | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 5.252 ms | 0 - 52 MB | NPU | VIT.tflite |
| VIT | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 7.003 ms | 0 - 156 MB | NPU | VIT.dlc |
| VIT | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 253.388 ms | 56 - 94 MB | NPU | VIT.onnx.zip |
| VIT | w8a8 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | TFLITE | 4.102 ms | 0 - 53 MB | NPU | VIT.tflite |
| VIT | w8a8 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 5.886 ms | 0 - 151 MB | NPU | VIT.dlc |
| VIT | w8a8 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | ONNX | 207.142 ms | 56 - 95 MB | NPU | VIT.onnx.zip |
| VIT | w8a8 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | TFLITE | 3.471 ms | 0 - 54 MB | NPU | VIT.tflite |
| VIT | w8a8 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_DLC | 3.782 ms | 0 - 257 MB | NPU | VIT.dlc |
| VIT | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 10.763 ms | 433 - 433 MB | NPU | VIT.dlc |
| VIT | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 183.277 ms | 60 - 60 MB | NPU | VIT.onnx.zip |
| VIT | w8a8_mixed_int16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | ONNX | 355.411 ms | 43 - 147 MB | NPU | VIT.onnx.zip |
| VIT | w8a8_mixed_int16 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | ONNX | 456.562 ms | 86 - 105 MB | CPU | VIT.onnx.zip |
| VIT | w8a8_mixed_int16 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | ONNX | 460.802 ms | 86 - 104 MB | CPU | VIT.onnx.zip |
| VIT | w8a8_mixed_int16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 294.86 ms | 79 - 122 MB | NPU | VIT.onnx.zip |
| VIT | w8a8_mixed_int16 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | ONNX | 254.105 ms | 78 - 120 MB | NPU | VIT.onnx.zip |
| VIT | w8a8_mixed_int16 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | ONNX | 240.281 ms | 79 - 122 MB | NPU | VIT.onnx.zip |
| VIT | w8a8_mixed_int16 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 347.308 ms | 130 - 130 MB | NPU | VIT.onnx.zip |
Installation
Install the package via pip:
pip install qai-hub-models
Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
Sign-in to Qualcomm® AI Hub with your
Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.
With this API token, you can configure your client to run models on the cloud hosted devices.
qai-hub configure --api_token API_TOKEN
Navigate to docs for more information.
Demo off target
The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.
python -m qai_hub_models.models.vit.demo
The above demo runs a reference implementation of pre-processing, model inference, and post processing.
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.vit.demo
Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:
- Performance check on-device on a cloud-hosted device
- Downloads compiled assets that can be deployed on-device for Android.
- Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.vit.export
How does this work?
This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:
Step 1: Compile model for on-device deployment
To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the jit.trace and then call the submit_compile_job API.
import torch
import qai_hub as hub
from qai_hub_models.models.vit import Model
# Load the model
torch_model = Model.from_pretrained()
# Device
device = hub.Device("Samsung Galaxy S25")
# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()
pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
# Compile model on a specific device
compile_job = hub.submit_compile_job(
model=pt_model,
device=device,
input_specs=torch_model.get_input_spec(),
)
# Get target model to run on-device
target_model = compile_job.get_target_model()
Step 2: Performance profiling on cloud-hosted device
After compiling models from step 1. Models can be profiled model on-device using the
target_model. Note that this scripts runs the model on a device automatically
provisioned in the cloud. Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
profile_job = hub.submit_profile_job(
model=target_model,
device=device,
)
Step 3: Verify on-device accuracy
To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
model=target_model,
device=device,
inputs=input_data,
)
on_device_output = inference_job.download_output_data()
With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.
Note: This on-device profiling and inference requires access to Qualcomm® AI Hub. Sign up for access.
Run demo on a cloud-hosted device
You can also run the demo on-device.
python -m qai_hub_models.models.vit.demo --eval-mode on-device
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.vit.demo -- --eval-mode on-device
Deploying compiled model to Android
The models can be deployed using multiple runtimes:
TensorFlow Lite (
.tfliteexport): This tutorial provides a guide to deploy the .tflite model in an Android application.QNN (
.soexport ): This sample app provides instructions on how to use the.soshared library in an Android application.
View on Qualcomm® AI Hub
Get more details on VIT's performance across various devices here. Explore all available models on Qualcomm® AI Hub
License
- The license for the original implementation of VIT can be found here.
- The license for the compiled assets for on-device deployment can be found here
References
- An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
- Source Model Implementation
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.
- Downloads last month
- 355
