Whisper-Base-En: Optimized for Mobile Deployment
Automatic speech recognition (ASR) model for English transcription as well as translation
OpenAI’s Whisper ASR (Automatic Speech Recognition) model is a state-of-the-art system designed for transcribing spoken language into written text. It exhibits robust performance in realistic, noisy environments, making it highly reliable for real-world applications. Specifically, it excels in long-form transcription, capable of accurately transcribing audio clips up to 30 seconds long. Time to the first token is the encoder's latency, while time to each additional token is decoder's latency, where we assume a mean decoded length specified below.
This model is an implementation of Whisper-Base-En found here.
This repository provides scripts to run Whisper-Base-En on Qualcomm® devices. More details on model performance across various devices, can be found here.
Model Details
- Model Type: Model_use_case.speech_recognition
- Model Stats:
- Model checkpoint: base.en
- Input resolution: 80x3000 (30 seconds audio)
- Mean decoded sequence length: 112 tokens
- Number of parameters (WhisperEncoderInf): 23.7M
- Model size (WhisperEncoderInf) (float): 90.6 MB
- Number of parameters (WhisperDecoderInf): 48.8M
- Model size (WhisperDecoderInf) (float): 186 MB
Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model |
---|---|---|---|---|---|---|---|---|
WhisperEncoderInf | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 839.092 ms | 37 - 60 MB | GPU | Whisper-Base-En.tflite |
WhisperEncoderInf | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 315.193 ms | 1 - 1399 MB | NPU | Whisper-Base-En.dlc |
WhisperEncoderInf | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 277.305 ms | 38 - 89 MB | GPU | Whisper-Base-En.tflite |
WhisperEncoderInf | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 200.519 ms | 0 - 84 MB | GPU | Whisper-Base-En.tflite |
WhisperEncoderInf | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 205.831 ms | 0 - 358 MB | NPU | Whisper-Base-En.dlc |
WhisperEncoderInf | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 353.451 ms | 38 - 62 MB | GPU | Whisper-Base-En.tflite |
WhisperEncoderInf | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 204.363 ms | 0 - 1398 MB | NPU | Whisper-Base-En.dlc |
WhisperEncoderInf | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 839.092 ms | 37 - 60 MB | GPU | Whisper-Base-En.tflite |
WhisperEncoderInf | float | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 315.193 ms | 1 - 1399 MB | NPU | Whisper-Base-En.dlc |
WhisperEncoderInf | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 221.305 ms | 0 - 69 MB | GPU | Whisper-Base-En.tflite |
WhisperEncoderInf | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 167.203 ms | 0 - 355 MB | NPU | Whisper-Base-En.dlc |
WhisperEncoderInf | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 189.893 ms | 38 - 68 MB | GPU | Whisper-Base-En.tflite |
WhisperEncoderInf | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 217.911 ms | 1 - 1392 MB | NPU | Whisper-Base-En.dlc |
WhisperEncoderInf | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 203.378 ms | 0 - 69 MB | GPU | Whisper-Base-En.tflite |
WhisperEncoderInf | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 161.769 ms | 0 - 357 MB | NPU | Whisper-Base-En.dlc |
WhisperEncoderInf | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 353.451 ms | 38 - 62 MB | GPU | Whisper-Base-En.tflite |
WhisperEncoderInf | float | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 204.363 ms | 0 - 1398 MB | NPU | Whisper-Base-En.dlc |
WhisperEncoderInf | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 201.716 ms | 0 - 68 MB | GPU | Whisper-Base-En.tflite |
WhisperEncoderInf | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 218.463 ms | 0 - 355 MB | NPU | Whisper-Base-En.dlc |
WhisperEncoderInf | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 259.434 ms | 10 - 569 MB | NPU | Whisper-Base-En.onnx |
WhisperEncoderInf | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 176.492 ms | 37 - 83 MB | GPU | Whisper-Base-En.tflite |
WhisperEncoderInf | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 142.136 ms | 0 - 1370 MB | NPU | Whisper-Base-En.dlc |
WhisperEncoderInf | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 190.438 ms | 92 - 1646 MB | NPU | Whisper-Base-En.onnx |
WhisperEncoderInf | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 160.081 ms | 39 - 67 MB | GPU | Whisper-Base-En.tflite |
WhisperEncoderInf | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 115.265 ms | 1 - 1377 MB | NPU | Whisper-Base-En.dlc |
WhisperEncoderInf | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 150.849 ms | 90 - 1645 MB | NPU | Whisper-Base-En.onnx |
WhisperEncoderInf | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 162.983 ms | 136 - 136 MB | NPU | Whisper-Base-En.dlc |
WhisperEncoderInf | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 207.702 ms | 133 - 133 MB | NPU | Whisper-Base-En.onnx |
WhisperDecoderInf | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 16.579 ms | 5 - 137 MB | NPU | Whisper-Base-En.tflite |
WhisperDecoderInf | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 6.813 ms | 11 - 80 MB | NPU | Whisper-Base-En.dlc |
WhisperDecoderInf | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 10.759 ms | 6 - 136 MB | NPU | Whisper-Base-En.tflite |
WhisperDecoderInf | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 9.549 ms | 5 - 39 MB | NPU | Whisper-Base-En.tflite |
WhisperDecoderInf | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 4.071 ms | 20 - 47 MB | NPU | Whisper-Base-En.dlc |
WhisperDecoderInf | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 10.754 ms | 0 - 132 MB | NPU | Whisper-Base-En.tflite |
WhisperDecoderInf | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 4.864 ms | 19 - 83 MB | NPU | Whisper-Base-En.dlc |
WhisperDecoderInf | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 16.579 ms | 5 - 137 MB | NPU | Whisper-Base-En.tflite |
WhisperDecoderInf | float | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 6.813 ms | 11 - 80 MB | NPU | Whisper-Base-En.dlc |
WhisperDecoderInf | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 9.651 ms | 5 - 41 MB | NPU | Whisper-Base-En.tflite |
WhisperDecoderInf | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 4.071 ms | 20 - 46 MB | NPU | Whisper-Base-En.dlc |
WhisperDecoderInf | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 11.602 ms | 5 - 128 MB | NPU | Whisper-Base-En.tflite |
WhisperDecoderInf | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 5.223 ms | 11 - 70 MB | NPU | Whisper-Base-En.dlc |
WhisperDecoderInf | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 9.717 ms | 5 - 34 MB | NPU | Whisper-Base-En.tflite |
WhisperDecoderInf | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 4.036 ms | 20 - 45 MB | NPU | Whisper-Base-En.dlc |
WhisperDecoderInf | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 10.754 ms | 0 - 132 MB | NPU | Whisper-Base-En.tflite |
WhisperDecoderInf | float | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 4.864 ms | 19 - 83 MB | NPU | Whisper-Base-En.dlc |
WhisperDecoderInf | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 9.691 ms | 5 - 35 MB | NPU | Whisper-Base-En.tflite |
WhisperDecoderInf | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 4.062 ms | 20 - 43 MB | NPU | Whisper-Base-En.dlc |
WhisperDecoderInf | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 10.009 ms | 0 - 142 MB | NPU | Whisper-Base-En.onnx |
WhisperDecoderInf | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 7.411 ms | 5 - 148 MB | NPU | Whisper-Base-En.tflite |
WhisperDecoderInf | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 3.149 ms | 16 - 91 MB | NPU | Whisper-Base-En.dlc |
WhisperDecoderInf | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 8.306 ms | 56 - 183 MB | NPU | Whisper-Base-En.onnx |
WhisperDecoderInf | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 7.378 ms | 5 - 134 MB | NPU | Whisper-Base-En.tflite |
WhisperDecoderInf | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 2.704 ms | 19 - 90 MB | NPU | Whisper-Base-En.dlc |
WhisperDecoderInf | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 7.631 ms | 56 - 166 MB | NPU | Whisper-Base-En.onnx |
WhisperDecoderInf | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 3.752 ms | 231 - 231 MB | NPU | Whisper-Base-En.dlc |
WhisperDecoderInf | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 8.905 ms | 107 - 107 MB | NPU | Whisper-Base-En.onnx |
Installation
Install the package via pip:
pip install "qai-hub-models[whisper-base-en]"
Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
Sign-in to Qualcomm® AI Hub with your
Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token
.
With this API token, you can configure your client to run models on the cloud hosted devices.
qai-hub configure --api_token API_TOKEN
Navigate to docs for more information.
Demo off target
The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.
python -m qai_hub_models.models.whisper_base_en.demo
The above demo runs a reference implementation of pre-processing, model inference, and post processing.
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.whisper_base_en.demo
Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:
- Performance check on-device on a cloud-hosted device
- Downloads compiled assets that can be deployed on-device for Android.
- Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.whisper_base_en.export
Profiling Results
------------------------------------------------------------
WhisperEncoderInf
Device : cs_8275 (ANDROID 14)
Runtime : TFLITE
Estimated inference time (ms) : 839.1
Estimated peak memory usage (MB): [37, 60]
Total # Ops : 419
Compute Unit(s) : npu (0 ops) gpu (408 ops) cpu (11 ops)
------------------------------------------------------------
WhisperDecoderInf
Device : cs_8275 (ANDROID 14)
Runtime : TFLITE
Estimated inference time (ms) : 16.6
Estimated peak memory usage (MB): [5, 137]
Total # Ops : 983
Compute Unit(s) : npu (983 ops) gpu (0 ops) cpu (0 ops)
How does this work?
This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:
Step 1: Compile model for on-device deployment
To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the jit.trace
and then call the submit_compile_job
API.
import torch
import qai_hub as hub
from qai_hub_models.models.whisper_base_en import Model
# Load the model
torch_model = Model.from_pretrained()
# Device
device = hub.Device("Samsung Galaxy S24")
# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()
pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
# Compile model on a specific device
compile_job = hub.submit_compile_job(
model=pt_model,
device=device,
input_specs=torch_model.get_input_spec(),
)
# Get target model to run on-device
target_model = compile_job.get_target_model()
Step 2: Performance profiling on cloud-hosted device
After compiling models from step 1. Models can be profiled model on-device using the
target_model
. Note that this scripts runs the model on a device automatically
provisioned in the cloud. Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
profile_job = hub.submit_profile_job(
model=target_model,
device=device,
)
Step 3: Verify on-device accuracy
To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
model=target_model,
device=device,
inputs=input_data,
)
on_device_output = inference_job.download_output_data()
With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.
Note: This on-device profiling and inference requires access to Qualcomm® AI Hub. Sign up for access.
Deploying compiled model to Android
The models can be deployed using multiple runtimes:
TensorFlow Lite (
.tflite
export): This tutorial provides a guide to deploy the .tflite model in an Android application.QNN (
.so
export ): This sample app provides instructions on how to use the.so
shared library in an Android application.
View on Qualcomm® AI Hub
Get more details on Whisper-Base-En's performance across various devices here. Explore all available models on Qualcomm® AI Hub
License
- The license for the original implementation of Whisper-Base-En can be found here.
- The license for the compiled assets for on-device deployment can be found here
References
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.
- Downloads last month
- 202