from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained('quidangz/LLamaRE-8B-Instruct-ZeroShot')
model = AutoModelForCausalLM.from_pretrained(
'quidangz/LLamaRE-8B-Instruct-ZeroShot',
torch_dtype="auto",
device_map="cuda",
)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
model.config.pad_token_id = model.config.eos_token_id
user_prompt = """
Extract relationships between entities in text **strictly using ONLY the provided Relationship List** below and **MUST** strictly adhere to the output format.
Format each relationship as '<relation_type>: <head_entity>, <tail_entity>' and separated multiple relationship by '|'. Return 'None' if no relationships are identified.
Relationship List: {re_labels}
Text: {text}
"""
query = 'An art exhibit at the Hakawati Theatre in Arab east Jerusalem was a series of portraits of Palestinians killed in the rebellion.'
re_labels = ["Organization based in", "Located in", "Live in", "Work for", "Kill"]
user_prompt = user_prompt.format(re_labels=re_labels, text=query)
messages = [
{
"role": "system",
"content": "You are an expert in Relation Extraction (RE) task."
},
{
"role": "user",
"content": user_prompt
}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer(text, return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512,
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response) # Organization based in: Hakawati Theatre, Jerusalem
Contact
Email: [email protected]
LinkedIn: Qui Dang
Facebook: ฤแบทng Bรก Qรบi
Citation
Please cite as
@misc{LlamaRE-8B-Instruct-ZeroShot,
title={LlamaRE: An Large Language Model for Relation Extraction},
author={Qui Dang Ba},
year={2025},
publisher={Huggingface},
}
- Downloads last month
- 1
Model tree for quidangz/LLamaRE-8B-Instruct-ZeroShot
Base model
meta-llama/Llama-3.1-8B
Finetuned
meta-llama/Llama-3.1-8B-Instruct
Finetuned
unsloth/Meta-Llama-3.1-8B-Instruct