mbert-hatespeechdetection-tamil
This model is a fine-tuned version of google-bert/bert-base-multilingual-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5521
- Accuracy: 0.8627
- F1: 0.8293
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 20
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|---|---|---|---|---|---|
| 0.69 | 1.0 | 13 | 0.6642 | 0.6275 | 0.2963 |
| 0.6359 | 2.0 | 26 | 0.5405 | 0.7647 | 0.76 |
| 0.506 | 3.0 | 39 | 0.5011 | 0.7843 | 0.7843 |
| 0.3823 | 4.0 | 52 | 0.4513 | 0.8431 | 0.84 |
| 0.2723 | 5.0 | 65 | 0.3428 | 0.8627 | 0.8511 |
| 0.1862 | 6.0 | 78 | 0.3705 | 0.8431 | 0.8182 |
| 0.132 | 7.0 | 91 | 0.4117 | 0.8627 | 0.8511 |
| 0.0629 | 8.0 | 104 | 0.5471 | 0.8627 | 0.8293 |
| 0.0302 | 9.0 | 117 | 0.6216 | 0.8627 | 0.8293 |
| 0.0083 | 10.0 | 130 | 0.7940 | 0.8431 | 0.8000 |
| 0.038 | 11.0 | 143 | 0.7867 | 0.8627 | 0.8293 |
| 0.052 | 12.0 | 156 | 0.7889 | 0.8431 | 0.8182 |
| 0.0179 | 13.0 | 169 | 1.0893 | 0.8039 | 0.8 |
| 0.0032 | 14.0 | 182 | 0.9028 | 0.8627 | 0.8108 |
| 0.0021 | 15.0 | 195 | 0.8124 | 0.8431 | 0.7895 |
| 0.0018 | 16.0 | 208 | 0.6030 | 0.8627 | 0.8205 |
| 0.0014 | 17.0 | 221 | 0.9289 | 0.8235 | 0.8085 |
| 0.0015 | 18.0 | 234 | 0.6005 | 0.8824 | 0.8421 |
| 0.0013 | 19.0 | 247 | 0.5998 | 0.8824 | 0.8421 |
| 0.0012 | 20.0 | 260 | 0.5521 | 0.8627 | 0.8293 |
Framework versions
- Transformers 4.53.3
- Pytorch 2.9.1+cu128
- Datasets 4.4.1
- Tokenizers 0.21.2
- Downloads last month
- 210
Model tree for ramesh070/mbert-hatespeechdetection-tamil
Base model
google-bert/bert-base-multilingual-cased