mbert-hatespeechdetection-tamil

This model is a fine-tuned version of google-bert/bert-base-multilingual-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5521
  • Accuracy: 0.8627
  • F1: 0.8293

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.69 1.0 13 0.6642 0.6275 0.2963
0.6359 2.0 26 0.5405 0.7647 0.76
0.506 3.0 39 0.5011 0.7843 0.7843
0.3823 4.0 52 0.4513 0.8431 0.84
0.2723 5.0 65 0.3428 0.8627 0.8511
0.1862 6.0 78 0.3705 0.8431 0.8182
0.132 7.0 91 0.4117 0.8627 0.8511
0.0629 8.0 104 0.5471 0.8627 0.8293
0.0302 9.0 117 0.6216 0.8627 0.8293
0.0083 10.0 130 0.7940 0.8431 0.8000
0.038 11.0 143 0.7867 0.8627 0.8293
0.052 12.0 156 0.7889 0.8431 0.8182
0.0179 13.0 169 1.0893 0.8039 0.8
0.0032 14.0 182 0.9028 0.8627 0.8108
0.0021 15.0 195 0.8124 0.8431 0.7895
0.0018 16.0 208 0.6030 0.8627 0.8205
0.0014 17.0 221 0.9289 0.8235 0.8085
0.0015 18.0 234 0.6005 0.8824 0.8421
0.0013 19.0 247 0.5998 0.8824 0.8421
0.0012 20.0 260 0.5521 0.8627 0.8293

Framework versions

  • Transformers 4.53.3
  • Pytorch 2.9.1+cu128
  • Datasets 4.4.1
  • Tokenizers 0.21.2
Downloads last month
210
Safetensors
Model size
0.2B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for ramesh070/mbert-hatespeechdetection-tamil

Finetuned
(900)
this model