EN-T5-Sci

Continued-pretrained T5-base on a cleaned English scientific corpus derived from Unpaywall.
Checkpoint: pretraining_logs_lr_001_OPTIMIZED_clean_restart/.../step-487500-val_ppl-3.72168.ckpt (see conversion_info.json for provenance).

Model Details

  • Architecture: T5-base (12L / 12L, d_model=768, 220M params)
  • Objective: Span corruption (15 % noise, mean span length 3)
  • Sequence prep: Sliding windows of 512 tokens with 50 % overlap
  • Optimizer: Adafactor with linear warmup (20k) → inverse sqrt decay, lr=1e-3, grad clip=1.0
  • Hardware: 4× NVIDIA H100 (mixed precision, gradient accumulation 2, effective batch 384)

Training Data

English scientific text (approx. 230 GB, ~11 M docs) cleaned with DataTrove and custom regex rules (see thesis Section “Automatic Data Preprocessing”). Tokenization via SentencePiece (original T5 vocab).

Evaluation (Global-MMLU, zero-shot, Global benchmark)

Metric EN DE
Overall accuracy 0.2687 0.2688
Humanities 0.2419 0.2414
STEM 0.2851 0.2858
Social Sciences 0.3107 0.3107
Other 0.2510 0.2514

Full plots + per-subtask CSV: evaluation_results/scientific_crosslingual_transfer_eval_full_15k/.

Intended Use

Zero-shot scientific QA, warm-start for downstream fine-tuning on English scientific NLP tasks. Use T5ForConditionalGeneration.from_pretrained("rausch/en-t5-sci-continued-pretraining-487k").

Limitations

  • Same T5-base context length (512) and tokenization.
  • Evaluated only on Global-MMLU EN/DE; other tasks may require finetuning.
  • Training corpus is English-only; no guarantees about other languages.

Citation

Please cite the Bachelor’s thesis (link) and Raffel et al. (2020) for T5.

Downloads last month
22
Safetensors
Model size
0.2B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Collection including rausch/en-t5-sci-continued-pretraining-487k