File size: 3,098 Bytes
3c6d23b 697cd6f 12326a0 697cd6f f69736a 697cd6f f69736a ade9196 533a40e 3c6d23b 976736f 3c6d23b f69736a 3c6d23b b4d3c90 976736f f69736a edf8908 15f687d 3c6d23b 2286f94 15f687d d972dbb 15f687d d972dbb 3c6d23b 15f687d ad0e015 245ed5a 3f8ff5e 15f687d f69736a 15f687d 3c6d23b 171f37b 15f687d f69736a 3c6d23b f69736a 3c6d23b 15f687d f69736a 15f687d f69736a 15f687d f69736a 15f687d f69736a 15f687d f69736a 15f687d f69736a 15f687d f69736a 15f687d f69736a 15f687d f69736a 3c6d23b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- f1
- auc
model-index:
- name: pretrained_model
results:
- task:
name: Text Classification
type: text-classification
metrics:
- name: F1
type: f1
value: 0.6797
- name: AUC
type: auc
value: 0.7942
widget:
- text: "I have trouble understanding what other people think or feel. I also like numbers, and finding patterns in numbers."
---
This model is a hybrid fine-tuned version of distilbert-base-uncased on Reddit dataset contains text related to mental health reports of users. it predicts mental health disorders from textual content.
It achieves the following results on the validation set:
* Loss: 0.1873
* F1: 0.6797
* AUC: 0.7942
* Precision: 0.7731
# Description
This model is a finetuned BERT (bert-base-uncased) model that predict different mental disorders.
* It is trained on a costume dataset of texts or posts (from Reddit) about general experiences of users with mental health problems.
* Dataset was cleaned and all direct mentions of the disorder names in the texts were removed.
It includes the following classes:
* Borderline
* Anxiety
* Depression
* Bipolar
* OCD
* ADHD
* Schizophrenia
* Asperger
* PTSD
# Training
Train size: 90%
Val size: 10%
Training set class counts (text samples) after balancing:
Borderline: 10398
Anxiety: 10393
Depression: 10400
Bipolar: 10359
OCD: 10413
ADHD: 10412
Schizophrenia: 10447
Asperger: 10470
PTSD: 10489
Validation set class counts after balancing:
Borderline: 1180
Anxiety: 1185
Depression: 1178
Bipolar: 1219
OCD: 1165
ADHD: 1166
Schizophrenia: 1131
Asperger: 1108
PTSD: 1089
model-finetuning: bert-base-uncased
The following hyperparameters were used during training:
learning_rate: 5e-05
train_batch_size: 32
val_batch_size: 32
optimizer: AdamW
num_epochs: 2-3
# Training results
| Epoch | Training Loss | Validation Loss |
|-------|---------------|-----------------|
| 1.0 | 0.2089 | 0.1771 |
| 2.0 | 0.1525 | 0.1716 |
F1 Score: 0.6797
AUC Score: 0.7942
## Classification Report
Borderline:
Precision: 0.6682
Recall: 0.5923
F1-score: 0.6280
Anxiety:
Precision: 0.6620
Recall: 0.6497
F1-score: 0.6558
Depression:
Precision: 0.7261
Recall: 0.5424
F1-score: 0.6209
Bipolar:
Precision: 0.8055
Recall: 0.5233
F1-score: 0.6345
OCD:
Precision: 0.8200
Recall: 0.6532
F1-score: 0.7271
ADHD:
Precision: 0.8740
Recall: 0.6603
F1-score: 0.7523
Schizophrenia:
Precision: 0.8017
Recall: 0.6472
F1-score: 0.7162
Asperger:
Precision: 0.7368
Recall: 0.6570
F1-score: 0.6946
PTSD:
Precision: 0.8612
Recall: 0.5812
F1-score: 0.6940
|