File size: 3,098 Bytes
3c6d23b
 
697cd6f
 
 
 
12326a0
697cd6f
 
 
 
 
 
 
 
 
f69736a
697cd6f
 
f69736a
ade9196
533a40e
3c6d23b
976736f
3c6d23b
 
 
 
f69736a
 
 
3c6d23b
 
b4d3c90
976736f
f69736a
edf8908
15f687d
3c6d23b
 
 
 
 
 
 
 
 
 
 
 
2286f94
 
 
15f687d
d972dbb
 
 
 
 
 
 
 
 
15f687d
 
d972dbb
 
 
 
 
 
 
 
 
3c6d23b
15f687d
ad0e015
245ed5a
3f8ff5e
15f687d
f69736a
 
 
15f687d
 
3c6d23b
 
171f37b
15f687d
f69736a
 
3c6d23b
f69736a
 
3c6d23b
15f687d
 
f69736a
 
 
 
15f687d
f69736a
 
 
 
15f687d
f69736a
 
 
 
15f687d
f69736a
 
 
15f687d
 
f69736a
 
 
 
15f687d
f69736a
 
 
 
15f687d
f69736a
 
 
15f687d
 
f69736a
 
 
15f687d
f69736a
 
 
 
3c6d23b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- f1
- auc
model-index:
- name: pretrained_model
  results:
  - task:
      name: Text Classification
      type: text-classification
    metrics:
    - name: F1
      type: f1
      value: 0.6797
    - name: AUC
      type: auc
      value: 0.7942
widget:
 - text: "I have trouble understanding what other people think or feel. I also like numbers, and finding patterns in numbers."
---
This model is a hybrid fine-tuned version of distilbert-base-uncased on Reddit dataset contains text related to mental health reports of users. it predicts mental health disorders from textual content.

It achieves the following results on the validation set:

* Loss: 0.1873
* F1: 0.6797
* AUC: 0.7942
* Precision: 0.7731

# Description
This model is a finetuned BERT (bert-base-uncased) model that predict different mental disorders.   
* It is trained on a costume dataset of texts or posts (from Reddit) about general experiences of users with mental health problems.   
* Dataset was cleaned and all direct mentions of the disorder names in the texts were removed.     
    
It includes the following classes:   

* Borderline
* Anxiety
* Depression
* Bipolar
* OCD
* ADHD
* Schizophrenia
* Asperger
* PTSD

# Training
Train size: 90%   
Val size: 10%   
   
Training set class counts (text samples) after balancing:   
Borderline:       10398   
Anxiety:          10393   
Depression:       10400   
Bipolar:          10359   
OCD:              10413   
ADHD:             10412   
Schizophrenia:    10447   
Asperger:         10470   
PTSD:             10489   
   
Validation set class counts after balancing:   
Borderline:       1180   
Anxiety:          1185   
Depression:       1178   
Bipolar:          1219   
OCD:              1165   
ADHD:             1166   
Schizophrenia:    1131   
Asperger:         1108   
PTSD:             1089   

   
model-finetuning: bert-base-uncased

The following hyperparameters were used during training:   
   
learning_rate: 5e-05   
train_batch_size: 32   
val_batch_size: 32   
optimizer: AdamW   
num_epochs: 2-3   

# Training results
| Epoch | Training Loss | Validation Loss |
|-------|---------------|-----------------|
| 1.0   | 0.2089        | 0.1771          |
| 2.0   | 0.1525        | 0.1716          |

F1 Score: 0.6797   
AUC Score: 0.7942   

## Classification Report
Borderline:   
 Precision: 0.6682   
 Recall: 0.5923    
 F1-score: 0.6280   
    
Anxiety:   
 Precision: 0.6620    
 Recall: 0.6497    
 F1-score: 0.6558    
    
Depression:   
 Precision: 0.7261  
 Recall: 0.5424   
 F1-score: 0.6209   
    
Bipolar:   
 Precision: 0.8055   
 Recall: 0.5233   
 F1-score: 0.6345   
    
OCD:   
 Precision: 0.8200   
 Recall: 0.6532   
 F1-score: 0.7271   
   
ADHD:   
 Precision: 0.8740   
 Recall: 0.6603   
 F1-score: 0.7523   
    
Schizophrenia:   
 Precision: 0.8017   
 Recall: 0.6472   
 F1-score: 0.7162   
    
Asperger:   
 Precision: 0.7368   
 Recall: 0.6570   
 F1-score: 0.6946   
    
PTSD:    
 Precision: 0.8612   
 Recall: 0.5812   
 F1-score: 0.6940