File size: 37,629 Bytes
1433a8a
 
 
 
 
 
 
 
 
 
 
 
 
 
9e81c40
 
 
a7ab361
0a66664
 
a7ab361
0a66664
 
 
 
 
 
 
 
a7ab361
0a66664
 
 
 
 
 
 
 
a7ab361
0a66664
 
 
 
 
a7ab361
0a66664
 
 
 
 
 
 
 
a7ab361
0a66664
 
 
 
 
1433a8a
f6063b5
1433a8a
 
 
c29f390
 
 
 
 
 
1433a8a
 
 
 
c29f390
 
1433a8a
f6063b5
 
1433a8a
c29f390
9fcad6e
c29f390
 
9fcad6e
c29f390
 
9fcad6e
c29f390
 
9fcad6e
c29f390
 
9fcad6e
c29f390
 
9fcad6e
c29f390
1433a8a
 
 
 
9e81c40
1433a8a
 
 
 
 
9e81c40
c29f390
1433a8a
 
 
f6063b5
1433a8a
 
 
 
 
 
 
 
 
 
 
 
 
c29f390
9e81c40
1433a8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a66664
 
 
1433a8a
 
 
 
 
 
 
 
9fcad6e
 
 
1433a8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c29f390
1433a8a
f6063b5
c29f390
1433a8a
e4bd418
 
9fcad6e
 
 
 
 
 
1433a8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6063b5
0a66664
5742358
9abcaed
5742358
 
 
0a66664
1433a8a
0a66664
 
 
 
 
9e81c40
 
 
 
 
 
 
 
1433a8a
 
 
 
 
f6063b5
0a66664
5742358
9abcaed
5742358
 
 
0a66664
1433a8a
0a66664
 
 
 
 
9e81c40
 
 
 
 
 
 
 
1433a8a
9fcad6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1433a8a
9fcad6e
1433a8a
9fcad6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1433a8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
---
language:
- en
license: apache-2.0
tags:
- biencoder
- sentence-transformers
- text-classification
- sentence-pair-classification
- semantic-similarity
- semantic-search
- retrieval
- reranking
- generated_from_trainer
- dataset_size:9233417
- loss:ArcFaceInBatchLoss
base_model: answerdotai/ModernBERT-base
widget:
- source_sentence: Hayley Vaughan portrayed Ripa on the ABC daytime soap opera , ``
    All My Children `` , between 1990 and 2002 .
  sentences:
  - Traxxpad is a music application for Sony 's PlayStation Portable published by
    Definitive Studios and developed by Eidos Interactive .
  - Between 1990 and 2002 , Hayley Vaughan Ripa portrayed in the ABC soap opera ``
    All My Children `` .
  - Between 1990 and 2002 , Ripa Hayley portrayed Vaughan in the ABC soap opera ``
    All My Children `` .
- source_sentence: Olivella monilifera is a species of dwarf sea snail , small gastropod
    mollusk in the family Olivellidae , the marine olives .
  sentences:
  - Olivella monilifera is a species of the dwarf - sea snail , small gastropod mollusk
    in the Olivellidae family , the marine olives .
  - He was cut by the Browns after being signed by the Bills in 2013 . He was later
    released .
  - Olivella monilifera is a kind of sea snail , marine gastropod mollusk in the Olivellidae
    family , the dwarf olives .
- source_sentence: Hayashi said that Mackey `` is a sort of `` of the original model
    for Tenchi .
  sentences:
  - In the summer of 2009 , Ellick shot a documentary about Malala Yousafzai .
  - Hayashi said that Mackey is `` sort of `` the original model for Tenchi .
  - Mackey said that Hayashi is `` sort of `` the original model for Tenchi .
- source_sentence: Much of the film was shot on location in Los Angeles and in nearby
    Burbank and Glendale .
  sentences:
  - Much of the film was shot on location in Los Angeles and in nearby Burbank and
    Glendale .
  - Much of the film was shot on site in Burbank and Glendale and in the nearby Los
    Angeles .
  - Traxxpad is a music application for the Sony PlayStation Portable developed by
    the Definitive Studios and published by Eidos Interactive .
- source_sentence: According to him , the earth is the carrier of his artistic work
    , which is only integrated into the creative process by minimal changes .
  sentences:
  - National players are Bold players .
  - According to him , earth is the carrier of his artistic work being integrated
    into the creative process only by minimal changes .
  - According to him , earth is the carrier of his creative work being integrated
    into the artistic process only by minimal changes .
datasets:
- redis/langcache-sentencepairs-v2
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_precision@1
- cosine_recall@1
- cosine_ndcg@10
- cosine_mrr@1
- cosine_map@100
model-index:
- name: Redis fine-tuned BiEncoder model for semantic caching on LangCache
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: test
      type: test
    metrics:
    - type: cosine_accuracy@1
      value: 0.6032809198037179
      name: Cosine Accuracy@1
    - type: cosine_precision@1
      value: 0.6032809198037179
      name: Cosine Precision@1
    - type: cosine_recall@1
      value: 0.585771482488324
      name: Cosine Recall@1
    - type: cosine_ndcg@10
      value: 0.7747479314468421
      name: Cosine Ndcg@10
    - type: cosine_mrr@1
      value: 0.6032809198037179
      name: Cosine Mrr@1
    - type: cosine_map@100
      value: 0.7280398908979986
      name: Cosine Map@100
---

# Redis fine-tuned BiEncoder model for semantic caching on LangCache

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v2) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for sentence pair similarity.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) <!-- at revision 8949b909ec900327062f0ebf497f51aef5e6f0c8 -->
- **Maximum Sequence Length:** 100 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v2)
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 100, 'do_lower_case': False, 'architecture': 'ModernBertModel'})
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("redis/langcache-embed-v3")
# Run inference
sentences = [
    'According to him , the earth is the carrier of his artistic work , which is only integrated into the creative process by minimal changes .',
    'According to him , earth is the carrier of his artistic work being integrated into the creative process only by minimal changes .',
    'According to him , earth is the carrier of his creative work being integrated into the artistic process only by minimal changes .',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.9180, 0.4531],
#         [0.9180, 1.0000, 0.4746],
#         [0.4531, 0.4746, 1.0000]], dtype=torch.bfloat16)
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Dataset: `test`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric             | Value      |
|:-------------------|:-----------|
| cosine_accuracy@1  | 0.6033     |
| cosine_precision@1 | 0.6033     |
| cosine_recall@1    | 0.5858     |
| **cosine_ndcg@10** | **0.7747** |
| cosine_mrr@1       | 0.6033     |
| cosine_map@100     | 0.728      |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### LangCache Sentence Pairs (all)

* Dataset: [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v2)
* Size: 126,938 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                            | positive                                                                          | negative                                                                          |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            | string                                                                            |
  | details | <ul><li>min: 8 tokens</li><li>mean: 27.27 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 27.27 tokens</li><li>max: 48 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 26.54 tokens</li><li>max: 61 tokens</li></ul> |
* Samples:
  | anchor                                                                                                                                      | positive                                                                                                                                      | negative                                                                                                                                      |
  |:--------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>The newer Punts are still very much in existence today and race in the same fleets as the older boats .</code>                        | <code>The newer punts are still very much in existence today and run in the same fleets as the older boats .</code>                           | <code>how can I get financial freedom as soon as possible?</code>                                                                             |
  | <code>The newer punts are still very much in existence today and run in the same fleets as the older boats .</code>                         | <code>The newer Punts are still very much in existence today and race in the same fleets as the older boats .</code>                          | <code>The older Punts are still very much in existence today and race in the same fleets as the newer boats .</code>                          |
  | <code>Turner Valley , was at the Turner Valley Bar N Ranch Airport , southwest of the Turner Valley Bar N Ranch , Alberta , Canada .</code> | <code>Turner Valley , , was located at Turner Valley Bar N Ranch Airport , southwest of Turner Valley Bar N Ranch , Alberta , Canada .</code> | <code>Turner Valley Bar N Ranch Airport , , was located at Turner Valley Bar N Ranch , southwest of Turner Valley , Alberta , Canada .</code> |
* Loss: <code>losses.ArcFaceInBatchLoss</code> with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim",
      "gather_across_devices": false
  }
  ```

### Evaluation Dataset

#### LangCache Sentence Pairs (all)

* Dataset: [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v2)
* Size: 126,938 evaluation samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                            | positive                                                                          | negative                                                                          |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            | string                                                                            |
  | details | <ul><li>min: 8 tokens</li><li>mean: 27.27 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 27.27 tokens</li><li>max: 48 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 26.54 tokens</li><li>max: 61 tokens</li></ul> |
* Samples:
  | anchor                                                                                                                                      | positive                                                                                                                                      | negative                                                                                                                                      |
  |:--------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>The newer Punts are still very much in existence today and race in the same fleets as the older boats .</code>                        | <code>The newer punts are still very much in existence today and run in the same fleets as the older boats .</code>                           | <code>how can I get financial freedom as soon as possible?</code>                                                                             |
  | <code>The newer punts are still very much in existence today and run in the same fleets as the older boats .</code>                         | <code>The newer Punts are still very much in existence today and race in the same fleets as the older boats .</code>                          | <code>The older Punts are still very much in existence today and race in the same fleets as the newer boats .</code>                          |
  | <code>Turner Valley , was at the Turner Valley Bar N Ranch Airport , southwest of the Turner Valley Bar N Ranch , Alberta , Canada .</code> | <code>Turner Valley , , was located at Turner Valley Bar N Ranch Airport , southwest of Turner Valley Bar N Ranch , Alberta , Canada .</code> | <code>Turner Valley Bar N Ranch Airport , , was located at Turner Valley Bar N Ranch , southwest of Turner Valley , Alberta , Canada .</code> |
* Loss: <code>losses.ArcFaceInBatchLoss</code> with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim",
      "gather_across_devices": false
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `weight_decay`: 0.001
- `adam_beta2`: 0.98
- `adam_epsilon`: 1e-06
- `max_steps`: 100000
- `warmup_ratio`: 0.1
- `load_best_model_at_end`: True
- `optim`: stable_adamw
- `ddp_find_unused_parameters`: False
- `push_to_hub`: True
- `hub_model_id`: redis/langcache-embed-v3
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.001
- `adam_beta1`: 0.9
- `adam_beta2`: 0.98
- `adam_epsilon`: 1e-06
- `max_grad_norm`: 1.0
- `num_train_epochs`: 3.0
- `max_steps`: 100000
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `parallelism_config`: None
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: stable_adamw
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: False
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: True
- `resume_from_checkpoint`: None
- `hub_model_id`: redis/langcache-embed-v3
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `hub_revision`: None
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `liger_kernel_config`: None
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
- `router_mapping`: {}
- `learning_rate_mapping`: {}

</details>

### Training Logs
<details><summary>Click to expand</summary>

| Epoch      | Step      | Training Loss | Validation Loss | test_cosine_ndcg@10 |
|:----------:|:---------:|:-------------:|:---------------:|:-------------------:|
| -1         | -1        | -             | -               | 0.5952              |
| 0.0069     | 500       | 3.4812        | 0.6932          | 0.6810              |
| 0.0139     | 1000      | 0.6045        | 0.4804          | 0.7354              |
| 0.0208     | 1500      | 0.3127        | 0.4128          | 0.7437              |
| 0.0277     | 2000      | 0.2424        | 0.4077          | 0.7440              |
| 0.0347     | 2500      | 0.2027        | 0.3707          | 0.7501              |
| 0.0416     | 3000      | 0.1752        | 0.3453          | 0.7551              |
| 0.0485     | 3500      | 0.1622        | 0.3380          | 0.7540              |
| 0.0555     | 4000      | 0.1466        | 0.3185          | 0.7583              |
| 0.0624     | 4500      | 0.1392        | 0.3092          | 0.7588              |
| 0.0693     | 5000      | 0.1342        | 0.3054          | 0.7566              |
| 0.0762     | 5500      | 0.1291        | 0.2960          | 0.7582              |
| 0.0832     | 6000      | 0.1291        | 0.2856          | 0.7616              |
| 0.0901     | 6500      | 0.1199        | 0.2803          | 0.7624              |
| 0.0970     | 7000      | 0.1171        | 0.2692          | 0.7648              |
| 0.1040     | 7500      | 0.1097        | 0.2811          | 0.7629              |
| 0.1109     | 8000      | 0.1089        | 0.2901          | 0.7621              |
| 0.1178     | 8500      | 0.1088        | 0.2986          | 0.7568              |
| 0.1248     | 9000      | 0.109         | 0.2806          | 0.7628              |
| 0.1317     | 9500      | 0.1046        | 0.3050          | 0.7587              |
| 0.1386     | 10000     | 0.1035        | 0.2925          | 0.7596              |
| 0.1456     | 10500     | 0.1041        | 0.2940          | 0.7573              |
| 0.1525     | 11000     | 0.1023        | 0.2790          | 0.7632              |
| 0.1594     | 11500     | 0.0992        | 0.3293          | 0.7542              |
| 0.1664     | 12000     | 0.0996        | 0.2876          | 0.7570              |
| 0.1733     | 12500     | 0.0949        | 0.2881          | 0.7591              |
| 0.1802     | 13000     | 0.0921        | 0.2861          | 0.7598              |
| 0.1871     | 13500     | 0.0912        | 0.2763          | 0.7632              |
| 0.1941     | 14000     | 0.0912        | 0.2785          | 0.7643              |
| 0.2010     | 14500     | 0.0909        | 0.3198          | 0.7629              |
| 0.2079     | 15000     | 0.0911        | 0.3015          | 0.7575              |
| 0.2149     | 15500     | 0.0861        | 0.3029          | 0.7597              |
| 0.2218     | 16000     | 0.0857        | 0.3271          | 0.7568              |
| 0.2287     | 16500     | 0.0843        | 0.2579          | 0.7645              |
| 0.2357     | 17000     | 0.085         | 0.2923          | 0.7625              |
| 0.2426     | 17500     | 0.0846        | 0.3241          | 0.7598              |
| 0.2495     | 18000     | 0.083         | 0.3128          | 0.7616              |
| 0.2565     | 18500     | 0.0794        | 0.2926          | 0.7611              |
| 0.2634     | 19000     | 0.0806        | 0.2665          | 0.7640              |
| 0.2703     | 19500     | 0.0782        | 0.2963          | 0.7615              |
| 0.2773     | 20000     | 0.0786        | 0.2771          | 0.7611              |
| 0.2842     | 20500     | 0.0761        | 0.2853          | 0.7623              |
| 0.2911     | 21000     | 0.0752        | 0.2782          | 0.7626              |
| 0.2980     | 21500     | 0.0777        | 0.2680          | 0.7612              |
| 0.3050     | 22000     | 0.0782        | 0.2731          | 0.7636              |
| 0.3119     | 22500     | 0.0785        | 0.2627          | 0.7627              |
| 0.3188     | 23000     | 0.0741        | 0.2714          | 0.7613              |
| 0.3258     | 23500     | 0.0741        | 0.2713          | 0.7661              |
| 0.3327     | 24000     | 0.072         | 0.2630          | 0.7636              |
| 0.3396     | 24500     | 0.0739        | 0.2839          | 0.7648              |
| 0.3466     | 25000     | 0.07          | 0.2860          | 0.7634              |
| 0.3535     | 25500     | 0.0715        | 0.2612          | 0.7666              |
| 0.3604     | 26000     | 0.0711        | 0.2531          | 0.7671              |
| 0.3674     | 26500     | 0.0701        | 0.2682          | 0.7638              |
| 0.3743     | 27000     | 0.0733        | 0.2708          | 0.7635              |
| 0.3812     | 27500     | 0.0705        | 0.2873          | 0.7636              |
| 0.3882     | 28000     | 0.0663        | 0.2831          | 0.7647              |
| 0.3951     | 28500     | 0.0678        | 0.2825          | 0.7643              |
| 0.4020     | 29000     | 0.0691        | 0.2733          | 0.7654              |
| 0.4089     | 29500     | 0.0696        | 0.2831          | 0.7621              |
| 0.4159     | 30000     | 0.0708        | 0.2893          | 0.7643              |
| 0.4228     | 30500     | 0.0663        | 0.2758          | 0.7653              |
| 0.4297     | 31000     | 0.064         | 0.2589          | 0.7666              |
| 0.4367     | 31500     | 0.0636        | 0.2491          | 0.7681              |
| 0.4436     | 32000     | 0.0644        | 0.2601          | 0.7650              |
| 0.4505     | 32500     | 0.0655        | 0.2611          | 0.7668              |
| 0.4575     | 33000     | 0.0643        | 0.2597          | 0.7664              |
| 0.4644     | 33500     | 0.066         | 0.2696          | 0.7677              |
| 0.4713     | 34000     | 0.0664        | 0.2489          | 0.7690              |
| 0.4783     | 34500     | 0.0654        | 0.2644          | 0.7649              |
| 0.4852     | 35000     | 0.0653        | 0.2704          | 0.7665              |
| 0.4921     | 35500     | 0.0657        | 0.2578          | 0.7689              |
| 0.4991     | 36000     | 0.0634        | 0.2629          | 0.7669              |
| 0.5060     | 36500     | 0.0609        | 0.2631          | 0.7663              |
| 0.5129     | 37000     | 0.0646        | 0.2586          | 0.7667              |
| 0.5198     | 37500     | 0.0634        | 0.2572          | 0.7657              |
| 0.5268     | 38000     | 0.0607        | 0.2624          | 0.7664              |
| 0.5337     | 38500     | 0.0621        | 0.2622          | 0.7668              |
| 0.5406     | 39000     | 0.0614        | 0.2562          | 0.7676              |
| 0.5476     | 39500     | 0.0621        | 0.2560          | 0.7673              |
| 0.5545     | 40000     | 0.0608        | 0.2506          | 0.7684              |
| 0.5614     | 40500     | 0.0621        | 0.2718          | 0.7666              |
| 0.5684     | 41000     | 0.0598        | 0.2599          | 0.7700              |
| 0.5753     | 41500     | 0.06          | 0.2706          | 0.7687              |
| 0.5822     | 42000     | 0.0618        | 0.2635          | 0.7694              |
| 0.5892     | 42500     | 0.0604        | 0.2743          | 0.7660              |
| 0.5961     | 43000     | 0.0576        | 0.2733          | 0.7661              |
| 0.6030     | 43500     | 0.0597        | 0.2644          | 0.7712              |
| 0.6100     | 44000     | 0.0592        | 0.2516          | 0.7694              |
| 0.6169     | 44500     | 0.0599        | 0.2461          | 0.7688              |
| 0.6238     | 45000     | 0.056         | 0.2438          | 0.7686              |
| 0.6307     | 45500     | 0.0573        | 0.2513          | 0.7703              |
| 0.6377     | 46000     | 0.0571        | 0.2526          | 0.7694              |
| 0.6446     | 46500     | 0.0573        | 0.2529          | 0.7702              |
| 0.6515     | 47000     | 0.0553        | 0.2529          | 0.7694              |
| 0.6585     | 47500     | 0.0541        | 0.2518          | 0.7707              |
| 0.6654     | 48000     | 0.0561        | 0.2471          | 0.7725              |
| 0.6723     | 48500     | 0.0558        | 0.2440          | 0.7710              |
| 0.6793     | 49000     | 0.0555        | 0.2556          | 0.7691              |
| 0.6862     | 49500     | 0.056         | 0.2479          | 0.7721              |
| 0.6931     | 50000     | 0.0564        | 0.2463          | 0.7723              |
| 0.7001     | 50500     | 0.0539        | 0.2561          | 0.7728              |
| 0.7070     | 51000     | 0.0526        | 0.2416          | 0.7725              |
| 0.7139     | 51500     | 0.0561        | 0.2501          | 0.7723              |
| 0.7209     | 52000     | 0.0545        | 0.2316          | 0.7732              |
| 0.7278     | 52500     | 0.0545        | 0.2352          | 0.7739              |
| 0.7347     | 53000     | 0.05          | 0.2278          | 0.7734              |
| 0.7416     | 53500     | 0.0515        | 0.2308          | 0.7730              |
| 0.7486     | 54000     | 0.0528        | 0.2524          | 0.7727              |
| 0.7555     | 54500     | 0.0509        | 0.2645          | 0.7717              |
| 0.7624     | 55000     | 0.0514        | 0.2659          | 0.7708              |
| 0.7694     | 55500     | 0.0503        | 0.2570          | 0.7725              |
| 0.7763     | 56000     | 0.0538        | 0.2524          | 0.7724              |
| 0.7832     | 56500     | 0.0477        | 0.2537          | 0.7719              |
| 0.7902     | 57000     | 0.0514        | 0.2333          | 0.7733              |
| 0.7971     | 57500     | 0.05          | 0.2420          | 0.7722              |
| 0.8040     | 58000     | 0.0518        | 0.2342          | 0.7734              |
| 0.8110     | 58500     | 0.0508        | 0.2402          | 0.7730              |
| 0.8179     | 59000     | 0.0474        | 0.2477          | 0.7711              |
| 0.8248     | 59500     | 0.0493        | 0.2465          | 0.7723              |
| 0.8318     | 60000     | 0.0492        | 0.2448          | 0.7731              |
| 0.8387     | 60500     | 0.0496        | 0.2498          | 0.7733              |
| 0.8456     | 61000     | 0.0479        | 0.2505          | 0.7721              |
| 0.8525     | 61500     | 0.0445        | 0.2449          | 0.7745              |
| **0.8595** | **62000** | **0.0477**    | **0.2507**      | **0.7748**          |
| 0.8664     | 62500     | 0.0491        | 0.2551          | 0.7716              |
| 0.8733     | 63000     | 0.0474        | 0.2451          | 0.7743              |
| 0.8803     | 63500     | 0.0452        | 0.2464          | 0.7741              |
| 0.8872     | 64000     | 0.0482        | 0.2412          | 0.7742              |
| 0.8941     | 64500     | 0.0483        | 0.2444          | 0.7736              |
| 0.9011     | 65000     | 0.0485        | 0.2456          | 0.7724              |
| 0.9080     | 65500     | 0.045         | 0.2493          | 0.7730              |
| 0.9149     | 66000     | 0.0496        | 0.2499          | 0.7721              |
| 0.9219     | 66500     | 0.0461        | 0.2474          | 0.7748              |
| 0.9288     | 67000     | 0.0465        | 0.2432          | 0.7743              |
| 0.9357     | 67500     | 0.0477        | 0.2432          | 0.7729              |
| 0.9427     | 68000     | 0.0425        | 0.2491          | 0.7740              |
| 0.9496     | 68500     | 0.0452        | 0.2445          | 0.7736              |
| 0.9565     | 69000     | 0.046         | 0.2397          | 0.7742              |
| 0.9634     | 69500     | 0.0449        | 0.2539          | 0.7731              |
| 0.9704     | 70000     | 0.0462        | 0.2446          | 0.7745              |
| 0.9773     | 70500     | 0.0435        | 0.2385          | 0.7742              |
| 0.9842     | 71000     | 0.0469        | 0.2334          | 0.7750              |
| 0.9912     | 71500     | 0.0447        | 0.2312          | 0.7745              |
| 0.9981     | 72000     | 0.0465        | 0.2361          | 0.7737              |
| 1.0050     | 72500     | 0.0341        | 0.2359          | 0.7728              |
| 1.0120     | 73000     | 0.03          | 0.2405          | 0.7727              |
| 1.0189     | 73500     | 0.029         | 0.2241          | 0.7724              |
| 1.0258     | 74000     | 0.0284        | 0.2297          | 0.7740              |
| 1.0328     | 74500     | 0.0273        | 0.2317          | 0.7735              |
| 1.0397     | 75000     | 0.0291        | 0.2352          | 0.7727              |
| 1.0466     | 75500     | 0.0286        | 0.2439          | 0.7724              |
| 1.0536     | 76000     | 0.0268        | 0.2336          | 0.7732              |
| 1.0605     | 76500     | 0.0276        | 0.2298          | 0.7728              |
| 1.0674     | 77000     | 0.0279        | 0.2268          | 0.7726              |
| 1.0743     | 77500     | 0.0283        | 0.2206          | 0.7738              |
| 1.0813     | 78000     | 0.0277        | 0.2263          | 0.7733              |
| 1.0882     | 78500     | 0.0285        | 0.2228          | 0.7740              |
| 1.0951     | 79000     | 0.0283        | 0.2250          | 0.7729              |
| 1.1021     | 79500     | 0.0276        | 0.2200          | 0.7730              |
| 1.1090     | 80000     | 0.0276        | 0.2221          | 0.7739              |
| 1.1159     | 80500     | 0.0268        | 0.2279          | 0.7730              |
| 1.1229     | 81000     | 0.0274        | 0.2302          | 0.7733              |
| 1.1298     | 81500     | 0.0281        | 0.2286          | 0.7736              |
| 1.1367     | 82000     | 0.0267        | 0.2306          | 0.7733              |
| 1.1437     | 82500     | 0.0267        | 0.2348          | 0.7731              |
| 1.1506     | 83000     | 0.0278        | 0.2301          | 0.7729              |
| 1.1575     | 83500     | 0.028         | 0.2240          | 0.7738              |
| 1.1645     | 84000     | 0.0282        | 0.2196          | 0.7744              |
| 1.1714     | 84500     | 0.0264        | 0.2241          | 0.7737              |
| 1.1783     | 85000     | 0.0258        | 0.2252          | 0.7736              |
| 1.1852     | 85500     | 0.027         | 0.2196          | 0.7742              |
| 1.1922     | 86000     | 0.0256        | 0.2189          | 0.7739              |
| 1.1991     | 86500     | 0.0259        | 0.2174          | 0.7749              |
| 1.2060     | 87000     | 0.0262        | 0.2209          | 0.7751              |
| 1.2130     | 87500     | 0.0265        | 0.2202          | 0.7739              |
| 1.2199     | 88000     | 0.025         | 0.2228          | 0.7737              |
| 1.2268     | 88500     | 0.0266        | 0.2233          | 0.7739              |
| 1.2338     | 89000     | 0.0261        | 0.2255          | 0.7736              |
| 1.2407     | 89500     | 0.0271        | 0.2219          | 0.7746              |
| 1.2476     | 90000     | 0.0256        | 0.2185          | 0.7757              |
| 1.2546     | 90500     | 0.0257        | 0.2190          | 0.7758              |
| 1.2615     | 91000     | 0.0239        | 0.2210          | 0.7750              |
| 1.2684     | 91500     | 0.0252        | 0.2236          | 0.7743              |
| 1.2754     | 92000     | 0.0245        | 0.2238          | 0.7743              |
| 1.2823     | 92500     | 0.0267        | 0.2234          | 0.7747              |
| 1.2892     | 93000     | 0.025         | 0.2235          | 0.7746              |
| 1.2961     | 93500     | 0.0246        | 0.2298          | 0.7740              |
| 1.3031     | 94000     | 0.0266        | 0.2239          | 0.7744              |
| 1.3100     | 94500     | 0.0256        | 0.2231          | 0.7740              |
| 1.3169     | 95000     | 0.0265        | 0.2214          | 0.7744              |
| 1.3239     | 95500     | 0.0253        | 0.2221          | 0.7747              |
| 1.3308     | 96000     | 0.0251        | 0.2222          | 0.7742              |
| 1.3377     | 96500     | 0.0244        | 0.2211          | 0.7748              |
| 1.3447     | 97000     | 0.0249        | 0.2216          | 0.7750              |
| 1.3516     | 97500     | 0.0257        | 0.2215          | 0.7745              |
| 1.3585     | 98000     | 0.0263        | 0.2215          | 0.7749              |
| 1.3655     | 98500     | 0.0258        | 0.2209          | 0.7749              |
| 1.3724     | 99000     | 0.0255        | 0.2212          | 0.7748              |
| 1.3793     | 99500     | 0.0252        | 0.2213          | 0.7751              |
| 1.3863     | 100000    | 0.0257        | 0.2213          | 0.7747              |

* The bold row denotes the saved checkpoint.
</details>

### Framework Versions
- Python: 3.12.3
- Sentence Transformers: 5.1.0
- Transformers: 4.56.0
- PyTorch: 2.8.0+cu128
- Accelerate: 1.10.1
- Datasets: 4.0.0
- Tokenizers: 0.22.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->