Instruction Residuals

This repository contains instruction residuals (delta weights) computed as the parameter-wise difference between google/gemma-2-2b-it and google/gemma-2-2b.

Apply these residuals to the base model to reconstruct the instruction-tuned weights without retraining.

Usage

from transformers import AutoModelForCausalLM, AutoTokenizer
from residuals import Residuals

base = AutoModelForCausalLM.from_pretrained("google/gemma-2-2b")
tok = AutoTokenizer.from_pretrained("google/gemma-2-2b")

res = Residuals.from_pretrained("residuals/gemma-2-2b")
res.apply(base, base_tokenizer=tok)

Provenance

  • Created at: 2025-10-25T17:50:00.416507+00:00
  • DType: float32
  • Parameters: 289
  • Shapes hash: 6789b3deacdafd173edfd184570ef4c643ff176182c85645b6c10ef4631161ab
  • Names hash: 7ca88b13e5561c1601a51613be5999f3633bdc77eb152a9266a24a5bf3da6cdf
  • Base model: google/gemma-2-2b
  • Instruction model: google/gemma-2-2b-it

Files

  • model.safetensors: Serialized residual tensors (safetensors format).
  • (optional) model.safetensors.index.json + shard files model-00001-of-000N.safetensors, ... for multi-part weights.
  • config.json: Residuals metadata and provenance.
  • tokenizer files: Saved tokenizer for compatibility.

About this format

These are additive residuals (task vectors). Applying them to the base model's parameters reconstructs the instruction-tuned model.

Tools

Generated with the residuals Python package. Install via: pip install residuals.

Downloads last month
4
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for residuals/gemma-2-2b

Base model

google/gemma-2-2b
Adapter
(138)
this model