Update application.py
Browse files- application.py +40 -36
application.py
CHANGED
|
@@ -2,22 +2,25 @@ import streamlit as st
|
|
| 2 |
import numpy as np
|
| 3 |
import torch
|
| 4 |
from transformers import DistilBertTokenizer, DistilBertForMaskedLM
|
| 5 |
-
|
| 6 |
from qa_model import ReuseQuestionDistilBERT
|
| 7 |
|
| 8 |
-
@st.
|
| 9 |
def load_model():
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
|
|
|
| 19 |
|
| 20 |
def get_answer(question, text, tokenizer, model):
|
|
|
|
|
|
|
|
|
|
| 21 |
question = [question.strip()]
|
| 22 |
text = [text.strip()]
|
| 23 |
|
|
@@ -27,44 +30,45 @@ def get_answer(question, text, tokenizer, model):
|
|
| 27 |
max_length=512,
|
| 28 |
truncation="only_second",
|
| 29 |
padding="max_length",
|
|
|
|
| 30 |
)
|
| 31 |
-
input_ids = torch.tensor(inputs['input_ids'])
|
| 32 |
-
outputs = model(input_ids, attention_mask=torch.tensor(inputs['attention_mask']), start_positions=None, end_positions=None)
|
| 33 |
|
| 34 |
-
|
| 35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
-
|
|
|
|
| 38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
answer_tokens = tokenizer.convert_ids_to_tokens(ans_tokens, skip_special_tokens=True)
|
| 40 |
predicted = tokenizer.convert_tokens_to_string(answer_tokens)
|
| 41 |
-
return predicted
|
| 42 |
-
|
| 43 |
|
| 44 |
def main():
|
| 45 |
st.set_page_config(page_title="Question Answering Tool", page_icon=":mag_right:")
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
"This tool will help you find answers to your questions about the text you provide. \n"
|
| 49 |
-
"Please enter your question and the text you want to search in the boxes below.")
|
| 50 |
model, tokenizer = load_model()
|
| 51 |
-
|
| 52 |
with st.form("qa_form"):
|
| 53 |
-
|
| 54 |
-
text = st.text_area("Enter your text here", on_change=None)
|
| 55 |
-
|
| 56 |
-
# define a streamlit input
|
| 57 |
question = st.text_input("Enter your question here")
|
| 58 |
|
| 59 |
if st.form_submit_button("Submit"):
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
answer = get_answer(question, text, tokenizer, model)
|
| 63 |
-
# display the answer
|
| 64 |
-
if answer == "":
|
| 65 |
-
data_load_state.text("Sorry but I don't know the answer to that question")
|
| 66 |
else:
|
| 67 |
-
|
| 68 |
-
|
|
|
|
| 69 |
|
| 70 |
-
|
|
|
|
|
|
| 2 |
import numpy as np
|
| 3 |
import torch
|
| 4 |
from transformers import DistilBertTokenizer, DistilBertForMaskedLM
|
|
|
|
| 5 |
from qa_model import ReuseQuestionDistilBERT
|
| 6 |
|
| 7 |
+
@st.cache_resource
|
| 8 |
def load_model():
|
| 9 |
+
try:
|
| 10 |
+
mod = DistilBertForMaskedLM.from_pretrained("distilbert-base-uncased").distilbert
|
| 11 |
+
m = ReuseQuestionDistilBERT(mod)
|
| 12 |
+
m.load_state_dict(torch.load("distilbert_reuse.model", map_location=torch.device('cpu')))
|
| 13 |
+
model = m
|
| 14 |
+
tokenizer = DistilBertTokenizer.from_pretrained('qa_tokenizer')
|
| 15 |
+
return model, tokenizer
|
| 16 |
+
except Exception as e:
|
| 17 |
+
st.error(f"Error loading model: {e}")
|
| 18 |
+
return None, None
|
| 19 |
|
| 20 |
def get_answer(question, text, tokenizer, model):
|
| 21 |
+
if model is None or tokenizer is None:
|
| 22 |
+
return "Model not loaded properly."
|
| 23 |
+
|
| 24 |
question = [question.strip()]
|
| 25 |
text = [text.strip()]
|
| 26 |
|
|
|
|
| 30 |
max_length=512,
|
| 31 |
truncation="only_second",
|
| 32 |
padding="max_length",
|
| 33 |
+
return_tensors="pt"
|
| 34 |
)
|
|
|
|
|
|
|
| 35 |
|
| 36 |
+
with torch.no_grad():
|
| 37 |
+
outputs = model(
|
| 38 |
+
inputs["input_ids"],
|
| 39 |
+
attention_mask=inputs["attention_mask"],
|
| 40 |
+
start_positions=None,
|
| 41 |
+
end_positions=None
|
| 42 |
+
)
|
| 43 |
|
| 44 |
+
if "start_logits" not in outputs or "end_logits" not in outputs:
|
| 45 |
+
return "Error: Model output structure is incorrect."
|
| 46 |
|
| 47 |
+
start = torch.argmax(outputs["start_logits"], dim=1)
|
| 48 |
+
end = torch.argmax(outputs["end_logits"], dim=1)
|
| 49 |
+
|
| 50 |
+
ans_tokens = inputs["input_ids"][0, start:end + 1]
|
| 51 |
answer_tokens = tokenizer.convert_ids_to_tokens(ans_tokens, skip_special_tokens=True)
|
| 52 |
predicted = tokenizer.convert_tokens_to_string(answer_tokens)
|
| 53 |
+
return predicted or "No answer found."
|
|
|
|
| 54 |
|
| 55 |
def main():
|
| 56 |
st.set_page_config(page_title="Question Answering Tool", page_icon=":mag_right:")
|
| 57 |
+
st.write("# Question Answering Tool")
|
| 58 |
+
|
|
|
|
|
|
|
| 59 |
model, tokenizer = load_model()
|
| 60 |
+
|
| 61 |
with st.form("qa_form"):
|
| 62 |
+
text = st.text_area("Enter your text here")
|
|
|
|
|
|
|
|
|
|
| 63 |
question = st.text_input("Enter your question here")
|
| 64 |
|
| 65 |
if st.form_submit_button("Submit"):
|
| 66 |
+
if not text or not question:
|
| 67 |
+
st.warning("Please enter both text and a question.")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
else:
|
| 69 |
+
st.text("Processing...")
|
| 70 |
+
answer = get_answer(question, text, tokenizer, model)
|
| 71 |
+
st.text(f"Answer: {answer}")
|
| 72 |
|
| 73 |
+
if __name__ == "__main__":
|
| 74 |
+
main()
|