|
"Provides basic training and validation with `Learner`" |
|
from .torch_core import * |
|
from .basic_data import * |
|
from .callback import * |
|
from .data_block import * |
|
from .utils.ipython import gpu_mem_restore |
|
import inspect |
|
from fastprogress.fastprogress import format_time, IN_NOTEBOOK |
|
from time import time |
|
from fastai.sixel import plot_sixel |
|
|
|
__all__ = ['Learner', 'LearnerCallback', 'Recorder', 'RecordOnCPU', 'fit', 'loss_batch', 'train_epoch', 'validate', |
|
'get_preds', 'load_learner'] |
|
|
|
defaults.lr = slice(3e-3) |
|
defaults.wd = 1e-2 |
|
defaults.extra_callbacks = None |
|
defaults.extra_callback_fns = None |
|
|
|
def loss_batch(model:nn.Module, xb:Tensor, yb:Tensor, loss_func:OptLossFunc=None, opt:OptOptimizer=None, |
|
cb_handler:Optional[CallbackHandler]=None, count:[int]=[1], batch_multiplier:int=1)->Tuple[Union[Tensor,int,float,str]]: |
|
"Calculate loss and metrics for a batch, call out to callbacks as necessary." |
|
cb_handler = ifnone(cb_handler, CallbackHandler()) |
|
if not is_listy(xb): xb = [xb] |
|
if not is_listy(yb): yb = [yb] |
|
out = model(*xb) |
|
|
|
if not loss_func: return to_detach(out), yb[0].detach() |
|
out = cb_handler.on_loss_begin(out) |
|
loss = loss_func(out, *yb)/batch_multiplier |
|
count[0]-=1 |
|
|
|
if opt is not None: |
|
loss,skip_bwd = cb_handler.on_backward_begin(loss) |
|
if not skip_bwd: loss.backward() |
|
if count[0] == 0: |
|
if not cb_handler.on_backward_end(): opt.step() |
|
if not cb_handler.on_step_end(): opt.zero_grad() |
|
count[0] = batch_multiplier |
|
|
|
return loss.detach().cpu() |
|
|
|
def get_preds(model:nn.Module, dl:DataLoader, pbar:Optional[PBar]=None, cb_handler:Optional[CallbackHandler]=None, |
|
activ:nn.Module=None, loss_func:OptLossFunc=None, n_batch:Optional[int]=None) -> List[Tensor]: |
|
"Tuple of predictions and targets, and optional losses (if `loss_func`) using `dl`, max batches `n_batch`." |
|
res = [torch.cat(o).cpu() for o in |
|
zip(*validate(model, dl, cb_handler=cb_handler, pbar=pbar, average=False, n_batch=n_batch))] |
|
if loss_func is not None: |
|
with NoneReduceOnCPU(loss_func) as lf: res.append(lf(res[0], res[1])) |
|
if activ is not None: res[0] = activ(res[0]) |
|
return res |
|
|
|
def validate(model:nn.Module, dl:DataLoader, loss_func:OptLossFunc=None, cb_handler:Optional[CallbackHandler]=None, |
|
pbar:Optional[PBar]=None, average=True, n_batch:Optional[int]=None)->Iterator[Tuple[Union[Tensor,int],...]]: |
|
"Calculate `loss_func` of `model` on `dl` in evaluation mode." |
|
model.eval() |
|
with torch.no_grad(): |
|
val_losses,nums = [],[] |
|
if cb_handler: cb_handler.set_dl(dl) |
|
for xb,yb in progress_bar(dl, parent=pbar, leave=(pbar is not None)): |
|
if cb_handler: xb, yb = cb_handler.on_batch_begin(xb, yb, train=False) |
|
val_loss = loss_batch(model, xb, yb, loss_func, cb_handler=cb_handler) |
|
val_losses.append(val_loss) |
|
if not is_listy(yb): yb = [yb] |
|
nums.append(first_el(yb).shape[0]) |
|
if cb_handler and cb_handler.on_batch_end(val_losses[-1]): break |
|
if n_batch and (len(nums)>=n_batch): break |
|
nums = np.array(nums, dtype=np.float32) |
|
if average: return (to_np(torch.stack(val_losses)) * nums).sum() / nums.sum() |
|
else: return val_losses |
|
|
|
def train_epoch(model:nn.Module, dl:DataLoader, opt:optim.Optimizer, loss_func:LossFunction)->None: |
|
"Simple training of `model` for 1 epoch of `dl` using optim `opt` and loss function `loss_func`." |
|
model.train() |
|
for xb,yb in dl: |
|
loss = loss_func(model(xb), yb) |
|
loss.backward() |
|
opt.step() |
|
opt.zero_grad() |
|
|
|
@dataclass |
|
class BasicLearner(): |
|
model:nn.Module |
|
loss_func:LossFunction |
|
opt:optim.Optimizer |
|
data:DataBunch |
|
|
|
def fit(epochs:int, learn:BasicLearner, callbacks:Optional[CallbackList]=None, metrics:OptMetrics=None, batch_multiplier:int=1)->None: |
|
"Fit the `model` on `data` and learn using `loss_func` and `opt`." |
|
assert len(learn.data.train_dl) != 0, f"""Your training dataloader is empty, can't train a model. |
|
Use a smaller batch size (batch size={learn.data.train_dl.batch_size} for {len(learn.data.train_dl.dataset)} elements).""" |
|
cb_handler = CallbackHandler(callbacks, metrics) |
|
pbar = master_bar(range(epochs)) |
|
cb_handler.on_train_begin(epochs, pbar=pbar, metrics=metrics) |
|
|
|
exception=False |
|
try: |
|
for epoch in pbar: |
|
learn.model.train() |
|
cb_handler.set_dl(learn.data.train_dl) |
|
cb_handler.on_epoch_begin() |
|
count = [batch_multiplier] |
|
for xb,yb in progress_bar(learn.data.train_dl, parent=pbar): |
|
xb, yb = cb_handler.on_batch_begin(xb, yb) |
|
loss = loss_batch(learn.model, xb, yb, learn.loss_func, learn.opt, cb_handler, count=count, batch_multiplier=batch_multiplier) |
|
if cb_handler.on_batch_end(loss): break |
|
|
|
if not cb_handler.skip_validate and not learn.data.empty_val: |
|
val_loss = validate(learn.model, learn.data.valid_dl, loss_func=learn.loss_func, |
|
cb_handler=cb_handler, pbar=pbar) |
|
else: val_loss=None |
|
if cb_handler.on_epoch_end(val_loss): break |
|
except Exception as e: |
|
exception = e |
|
raise |
|
finally: cb_handler.on_train_end(exception) |
|
|
|
loss_func_name2activ = {'cross_entropy_loss': F.softmax, 'nll_loss': torch.exp, 'poisson_nll_loss': torch.exp, |
|
'kl_div_loss': torch.exp, 'bce_with_logits_loss': torch.sigmoid, 'cross_entropy': F.softmax, |
|
'kl_div': torch.exp, 'binary_cross_entropy_with_logits': torch.sigmoid, |
|
} |
|
|
|
def _loss_func_name2activ(name:str, axis:int=-1): |
|
res = loss_func_name2activ[name] |
|
if res == F.softmax: res = partial(F.softmax, dim=axis) |
|
return res |
|
|
|
def _loss_func2activ(loss_func): |
|
if getattr(loss_func,'keywords',None): |
|
if not loss_func.keywords.get('log_input', True): return |
|
axis = getattr(loss_func, 'axis', -1) |
|
|
|
loss_func = getattr(loss_func, 'func', loss_func) |
|
|
|
loss_func = getattr(loss_func, 'func', loss_func) |
|
cls_name = camel2snake(loss_func.__class__.__name__) |
|
if cls_name == 'mix_up_loss': |
|
loss_func = loss_func.crit |
|
cls_name = camel2snake(loss_func.__class__.__name__) |
|
if cls_name in loss_func_name2activ: |
|
if cls_name == 'poisson_nll_loss' and (not getattr(loss_func, 'log_input', True)): return |
|
return _loss_func_name2activ(cls_name, axis) |
|
if getattr(loss_func,'__name__','') in loss_func_name2activ: |
|
return _loss_func_name2activ(loss_func.__name__, axis) |
|
return noop |
|
|
|
@dataclass |
|
class Learner(): |
|
"Trainer for `model` using `data` to minimize `loss_func` with optimizer `opt_func`." |
|
data:DataBunch |
|
model:nn.Module |
|
opt_func:Callable=AdamW |
|
loss_func:Callable=None |
|
metrics:Collection[Callable]=None |
|
true_wd:bool=True |
|
bn_wd:bool=True |
|
wd:Floats=defaults.wd |
|
train_bn:bool=True |
|
path:str = None |
|
model_dir:PathOrStr = 'models' |
|
callback_fns:Collection[Callable]=None |
|
callbacks:Collection[Callback]=field(default_factory=list) |
|
layer_groups:Collection[nn.Module]=None |
|
add_time:bool=True |
|
silent:bool=None |
|
def __post_init__(self)->None: |
|
"Setup path,metrics, callbacks and ensure model directory exists." |
|
self.path = Path(ifnone(self.path, self.data.path)) |
|
self.model = self.model.to(self.data.device) |
|
self.loss_func = self.loss_func or self.data.loss_func |
|
self.metrics=listify(self.metrics) |
|
if not self.layer_groups: self.layer_groups = [nn.Sequential(*flatten_model(self.model))] |
|
self.callbacks = listify(self.callbacks) |
|
if self.silent is None: self.silent = defaults.silent |
|
self.callback_fns = [partial(Recorder, add_time=self.add_time, silent=self.silent)] + listify(self.callback_fns) |
|
|
|
def init(self, init): apply_init(self.model, init) |
|
|
|
def _test_writeable_path(self): |
|
path = self.path/self.model_dir |
|
try: |
|
path.mkdir(parents=True, exist_ok=True) |
|
tmp_file = get_tmp_file(path) |
|
except OSError as e: |
|
raise Exception(f"{e}\nCan't write to '{path}', set `learn.model_dir` attribute in Learner to a full libpath path that is writable") from None |
|
os.remove(tmp_file) |
|
|
|
def lr_range(self, lr:Union[float,slice])->np.ndarray: |
|
"Build differential learning rates from `lr`." |
|
if not isinstance(lr,slice): return lr |
|
if lr.start: res = even_mults(lr.start, lr.stop, len(self.layer_groups)) |
|
else: res = [lr.stop/10]*(len(self.layer_groups)-1) + [lr.stop] |
|
return np.array(res) |
|
|
|
def fit(self, epochs:int, lr:Union[Floats,slice]=defaults.lr, |
|
wd:Floats=None, callbacks:Collection[Callback]=None, batch_multiplier:int=1)->None: |
|
"Fit the model on this learner with `lr` learning rate, `wd` weight decay for `epochs` with `callbacks`." |
|
lr = self.lr_range(lr) |
|
if wd is None: wd = self.wd |
|
if not getattr(self, 'opt', False): self.create_opt(lr, wd) |
|
else: self.opt.lr,self.opt.wd = lr,wd |
|
callbacks = [cb(self) for cb in self.callback_fns + listify(defaults.extra_callback_fns)] + listify(callbacks) |
|
if defaults.extra_callbacks is not None: callbacks += defaults.extra_callbacks |
|
fit(epochs, self, metrics=self.metrics, callbacks=self.callbacks+callbacks, batch_multiplier=batch_multiplier) |
|
|
|
def create_opt(self, lr:Floats, wd:Floats=0.)->None: |
|
"Create optimizer with `lr` learning rate and `wd` weight decay." |
|
self.opt = OptimWrapper.create(self.opt_func, lr, self.layer_groups, wd=wd, true_wd=self.true_wd, bn_wd=self.bn_wd) |
|
|
|
def split(self, split_on:SplitFuncOrIdxList)->None: |
|
"Split the model at `split_on`." |
|
if isinstance(split_on,Callable): split_on = split_on(self.model) |
|
self.layer_groups = split_model(self.model, split_on) |
|
return self |
|
|
|
def freeze_to(self, n:int)->None: |
|
"Freeze layers up to layer group `n`." |
|
for g in self.layer_groups[:n]: |
|
for l in g: |
|
if not self.train_bn or not isinstance(l, bn_types): requires_grad(l, False) |
|
for g in self.layer_groups[n:]: requires_grad(g, True) |
|
self.create_opt(defaults.lr) |
|
|
|
def freeze(self)->None: |
|
"Freeze up to last layer group." |
|
assert(len(self.layer_groups)>1) |
|
self.freeze_to(-1) |
|
|
|
def unfreeze(self): |
|
"Unfreeze entire model." |
|
self.freeze_to(0) |
|
|
|
def export(self, file:PathLikeOrBinaryStream='export.pkl', destroy=False): |
|
"Export the state of the `Learner` in `self.path/file`. `file` can be file-like (file or buffer)" |
|
if rank_distrib(): return |
|
args = ['opt_func', 'loss_func', 'metrics', 'true_wd', 'bn_wd', 'wd', 'train_bn', 'model_dir', 'callback_fns'] |
|
state = {a:getattr(self,a) for a in args} |
|
state['cb_state'] = {cb.__class__:cb.get_state() for cb in self.callbacks} |
|
|
|
|
|
with ModelOnCPU(self.model) as m: |
|
state['model'] = m |
|
xtra = dict(normalize=self.data.norm.keywords) if getattr(self.data, 'norm', False) else {} |
|
state['data'] = self.data.valid_ds.get_state(**xtra) |
|
state['cls'] = self.__class__ |
|
try_save(state, self.path, file) |
|
if destroy: self.destroy() |
|
|
|
def save(self, file:PathLikeOrBinaryStream=None, return_path:bool=False, with_opt:bool=True): |
|
"Save model and optimizer state (if `with_opt`) with `file` to `self.model_dir`. `file` can be file-like (file or buffer)" |
|
if is_pathlike(file): self._test_writeable_path() |
|
if rank_distrib(): return |
|
target = self.path/self.model_dir/f'{file}.pth' if is_pathlike(file) else file |
|
if not hasattr(self, 'opt'): with_opt=False |
|
if not with_opt: state = get_model(self.model).state_dict() |
|
else: state = {'model': get_model(self.model).state_dict(), 'opt':self.opt.state_dict()} |
|
torch.save(state, target) |
|
if return_path: return target |
|
|
|
def dl(self, ds_type:DatasetType=DatasetType.Valid): |
|
"Return DataLoader for DatasetType `ds_type`." |
|
return self.data.dl(ds_type) |
|
|
|
def load(self, file:PathLikeOrBinaryStream=None, device:torch.device=None, strict:bool=True, |
|
with_opt:bool=None, purge:bool=True, remove_module:bool=False): |
|
"Load model and optimizer state (if `with_opt`) `file` from `self.model_dir` using `device`. `file` can be file-like (file or buffer)" |
|
if purge: self.purge(clear_opt=ifnone(with_opt, False)) |
|
if device is None: device = self.data.device |
|
elif isinstance(device, int): device = torch.device('cuda', device) |
|
source = self.path/self.model_dir/f'{file}.pth' if is_pathlike(file) else file |
|
state = torch.load(source, map_location=device) |
|
if set(state.keys()) == {'model', 'opt'}: |
|
model_state = state['model'] |
|
if remove_module: model_state = remove_module_load(model_state) |
|
get_model(self.model).load_state_dict(model_state, strict=strict) |
|
if ifnone(with_opt,True): |
|
if not hasattr(self, 'opt'): self.create_opt(defaults.lr, self.wd) |
|
try: self.opt.load_state_dict(state['opt']) |
|
except: pass |
|
else: |
|
if with_opt: warn("Saved filed doesn't contain an optimizer state.") |
|
if remove_module: state = remove_module_load(state) |
|
get_model(self.model).load_state_dict(state, strict=strict) |
|
del state |
|
gc.collect() |
|
return self |
|
|
|
def destroy(self): |
|
"Free the Learner internals, leaving just an empty shell that consumes no memory" |
|
|
|
class ZombieLearner(Learner): |
|
msg = "this object has been destroyed" |
|
def __getattr__(self, item): print(ZombieLearner.msg); return None |
|
def destroyed(*args, **kwargs): print(ZombieLearner.msg) |
|
|
|
attrs = [k for k in self.__dict__.keys() if not k.startswith("__")] |
|
for a in attrs: delattr(self, a) |
|
|
|
methods = [k for k in dir(self) if not k.startswith("__") and inspect.isroutine(getattr(self, k))] |
|
for m in methods: setattr(self, m, ZombieLearner.destroyed) |
|
self.__class__ = ZombieLearner |
|
gc.collect() |
|
print("this Learner object self-destroyed - it still exists, but no longer usable") |
|
|
|
def purge(self, clear_opt:bool=True): |
|
"Purge the `Learner` of all cached attributes to release some GPU memory." |
|
self._test_writeable_path() |
|
attrs_all = [k for k in self.__dict__.keys() if not k.startswith("__")] |
|
attrs_pkl = ['bn_wd', 'callback_fns', 'layer_groups', 'loss_func', 'metrics', 'model', |
|
'model_dir', 'opt_func', 'path', 'train_bn', 'true_wd', 'wd'] |
|
|
|
attrs_keep = ['data', 'recorder'] |
|
attrs_del = list(set(attrs_all) - set(attrs_keep)) |
|
state = {a:getattr(self, a) for a in attrs_pkl} |
|
state['cb_state'] = {cb.__class__:cb.get_state() for cb in self.callbacks} |
|
if hasattr(self, 'opt'): state['opt'] = self.opt.get_state() |
|
|
|
tmp_file = get_tmp_file(self.path/self.model_dir) |
|
torch.save(state, open(tmp_file, 'wb')) |
|
for a in attrs_del: delattr(self, a) |
|
gc.collect() |
|
state = torch.load(tmp_file) |
|
os.remove(tmp_file) |
|
|
|
for a in attrs_pkl: setattr(self, a, state[a]) |
|
cb_state = state.pop('cb_state') |
|
self.callbacks = [load_callback(c,s, self) for c,s in cb_state.items()] |
|
if not clear_opt and 'opt' in state: |
|
try: self.opt = OptimWrapper.load_with_state_and_layer_group(state['opt'], self.layer_groups) |
|
except: warn("Wasn't able to properly load the optimizer state again.") |
|
del state |
|
gc.collect() |
|
return self |
|
|
|
def get_preds(self, ds_type:DatasetType=DatasetType.Valid, with_loss:bool=False, n_batch:Optional[int]=None, |
|
pbar:Optional[PBar]=None) -> List[Tensor]: |
|
"Return predictions and targets on `ds_type` dataset." |
|
lf = self.loss_func if with_loss else None |
|
return get_preds(self.model, self.dl(ds_type), cb_handler=CallbackHandler(self.callbacks), |
|
activ=_loss_func2activ(self.loss_func), loss_func=lf, n_batch=n_batch, pbar=pbar) |
|
|
|
def pred_batch(self, ds_type:DatasetType=DatasetType.Valid, batch:Tuple=None, reconstruct:bool=False, with_dropout:bool=False) -> List[Tensor]: |
|
with torch.no_grad(): |
|
training = self.model.training |
|
self.model.train(False) |
|
"Return output of the model on one batch from `ds_type` dataset." |
|
if batch is not None: xb,yb = batch |
|
else: xb,yb = self.data.one_batch(ds_type, detach=False, denorm=False) |
|
cb_handler = CallbackHandler(self.callbacks) |
|
xb,yb = cb_handler.on_batch_begin(xb,yb, train=False) |
|
if not with_dropout: |
|
preds = loss_batch(self.model.eval(), xb, yb, cb_handler=cb_handler) |
|
else: |
|
preds = loss_batch(self.model.eval().apply(self.apply_dropout), xb, yb, cb_handler=cb_handler) |
|
res = _loss_func2activ(self.loss_func)(preds[0]) |
|
self.model.train(training) |
|
if not reconstruct: return res |
|
res = res.detach().cpu() |
|
ds = self.dl(ds_type).dataset |
|
norm = getattr(self.data, 'norm', False) |
|
if norm and norm.keywords.get('do_y',False): |
|
res = self.data.denorm(res, do_x=True) |
|
return [ds.reconstruct(o) for o in res] |
|
|
|
def backward(self, item): |
|
"Pass `item` through the model and computes the gradient. Useful if `backward_hooks` are attached." |
|
xb,yb = self.data.one_item(item) |
|
loss = loss_batch(self.model.eval(), xb, yb, self.loss_func, opt=FakeOptimizer(), |
|
cb_handler=CallbackHandler(self.callbacks)) |
|
return loss |
|
|
|
def predict(self, item:ItemBase, return_x:bool=False, batch_first:bool=True, with_dropout:bool=False, **kwargs): |
|
"Return predicted class, label and probabilities for `item`." |
|
batch = self.data.one_item(item) |
|
res = self.pred_batch(batch=batch, with_dropout=with_dropout) |
|
raw_pred,x = grab_idx(res,0,batch_first=batch_first),batch[0] |
|
norm = getattr(self.data,'norm',False) |
|
if norm: |
|
x = self.data.denorm(x) |
|
if norm.keywords.get('do_y',False): raw_pred = self.data.denorm(raw_pred) |
|
ds = self.data.single_ds |
|
pred = ds.y.analyze_pred(raw_pred, **kwargs) |
|
x = ds.x.reconstruct(grab_idx(x, 0)) |
|
y = ds.y.reconstruct(pred, x) if has_arg(ds.y.reconstruct, 'x') else ds.y.reconstruct(pred) |
|
return (x, y, pred, raw_pred) if return_x else (y, pred, raw_pred) |
|
|
|
def validate(self, dl=None, callbacks=None, metrics=None): |
|
"Validate on `dl` with potential `callbacks` and `metrics`." |
|
dl = ifnone(dl, self.data.valid_dl) |
|
metrics = ifnone(metrics, self.metrics) |
|
cb_handler = CallbackHandler(self.callbacks + ifnone(callbacks, []), metrics) |
|
cb_handler.on_epoch_begin() |
|
val_metrics = validate(self.model, dl, self.loss_func, cb_handler) |
|
cb_handler.on_epoch_end(val_metrics) |
|
return cb_handler.state_dict['last_metrics'] |
|
|
|
def show_results(self, ds_type=DatasetType.Valid, rows:int=5, **kwargs): |
|
"Show `rows` result of predictions on `ds_type` dataset." |
|
|
|
|
|
n_items = rows ** 2 if self.data.train_ds.x._square_show_res else rows |
|
if self.dl(ds_type).batch_size < n_items: n_items = self.dl(ds_type).batch_size |
|
ds = self.dl(ds_type).dataset |
|
self.callbacks.append(RecordOnCPU()) |
|
preds = self.pred_batch(ds_type) |
|
*self.callbacks,rec_cpu = self.callbacks |
|
x,y = rec_cpu.input,rec_cpu.target |
|
norm = getattr(self.data,'norm',False) |
|
if norm: |
|
x = self.data.denorm(x) |
|
if norm.keywords.get('do_y',False): |
|
y = self.data.denorm(y, do_x=True) |
|
preds = self.data.denorm(preds, do_x=True) |
|
analyze_kwargs,kwargs = split_kwargs_by_func(kwargs, ds.y.analyze_pred) |
|
preds = [ds.y.analyze_pred(grab_idx(preds, i), **analyze_kwargs) for i in range(n_items)] |
|
xs = [ds.x.reconstruct(grab_idx(x, i)) for i in range(n_items)] |
|
if has_arg(ds.y.reconstruct, 'x'): |
|
ys = [ds.y.reconstruct(grab_idx(y, i), x=x) for i,x in enumerate(xs)] |
|
zs = [ds.y.reconstruct(z, x=x) for z,x in zip(preds,xs)] |
|
else : |
|
ys = [ds.y.reconstruct(grab_idx(y, i)) for i in range(n_items)] |
|
zs = [ds.y.reconstruct(z) for z in preds] |
|
ds.x.show_xyzs(xs, ys, zs, **kwargs) |
|
|
|
def apply_dropout(self, m): |
|
"If a module contains 'dropout' in it's name, it will be switched to .train() mode." |
|
if 'dropout' in m.__class__.__name__.lower(): m.train() |
|
|
|
def predict_with_mc_dropout(self, item:ItemBase, with_dropout:bool=True, n_times=10, **kwargs): |
|
"Make predictions with dropout turned on for n_times (default 10)." |
|
return [self.predict(item, with_dropout=with_dropout) for _ in range(n_times)] |
|
|
|
class RecordOnCPU(Callback): |
|
"Store the `input` and `target` going through the model on the CPU." |
|
def on_batch_begin(self, last_input,last_target,**kwargs): |
|
self.input,self.target = to_cpu(last_input),to_cpu(last_target) |
|
|
|
class LearnerCallback(Callback): |
|
"Base class for creating callbacks for a `Learner`." |
|
def __init__(self, learn): |
|
self._learn = weakref.ref(learn) |
|
self.exclude,self.not_min = ['_learn'],[] |
|
setattr(self.learn, self.cb_name, self) |
|
|
|
def __getattr__(self,k): return getattr(self.learn, k) |
|
def __setstate__(self,data:Any): self.__dict__.update(data) |
|
|
|
@property |
|
def learn(self) -> Learner: return self._learn() |
|
@learn.setter |
|
def learn(self, learn: Learner) -> None: self._learn = weakref.ref(learn) |
|
|
|
@property |
|
def cb_name(self): return camel2snake(self.__class__.__name__) |
|
|
|
class Recorder(LearnerCallback): |
|
"A `LearnerCallback` that records epoch, loss, opt and metric data during training." |
|
_order=-10 |
|
def __init__(self, learn:Learner, add_time:bool=True, silent:bool=False): |
|
super().__init__(learn) |
|
self.opt = self.learn.opt |
|
self.train_dl = self.learn.data.train_dl |
|
self.no_val,self.silent,self.add_time = False,silent,add_time |
|
|
|
def on_train_begin(self, pbar:PBar, metrics_names:Collection[str], **kwargs:Any)->None: |
|
"Initialize recording status at beginning of training." |
|
self.pbar = pbar |
|
self.names = ['epoch', 'train_loss'] if self.no_val else ['epoch', 'train_loss', 'valid_loss'] |
|
self.metrics_names = metrics_names |
|
if hasattr(self, '_added_met_names'): self.metrics_names += self._added_met_names |
|
self.names += self.metrics_names |
|
if self.add_time: self.names.append('time') |
|
if not self.silent: self.pbar.write(self.names, table=True) |
|
self.losses,self.val_losses,self.lrs,self.moms,self.metrics,self.nb_batches = [],[],[],[],[],[] |
|
|
|
def on_epoch_begin(self, **kwargs:Any)->None: |
|
if self.add_time: self.start_epoch = time() |
|
|
|
def on_batch_begin(self, train, **kwargs:Any)->None: |
|
"Record learning rate and momentum at beginning of batch." |
|
if train: |
|
self.lrs.append(self.opt.lr) |
|
self.moms.append(self.opt.mom) |
|
|
|
def on_backward_begin(self, smooth_loss:Tensor, **kwargs:Any)->None: |
|
"Record the loss before any other callback has a chance to modify it." |
|
self.losses.append(smooth_loss) |
|
if self.pbar is not None and hasattr(self.pbar,'child'): |
|
self.pbar.child.comment = f'{smooth_loss:.4f}' |
|
|
|
def on_epoch_end(self, epoch:int, num_batch:int, smooth_loss:Tensor, |
|
last_metrics=MetricsList, **kwargs:Any)->bool: |
|
"Save epoch info: num_batch, smooth_loss, metrics." |
|
self.nb_batches.append(num_batch) |
|
if last_metrics is not None: self.val_losses.append(last_metrics[0]) |
|
else: last_metrics = [] if self.no_val else [None] |
|
if len(last_metrics) > 1: self.metrics.append(last_metrics[1:]) |
|
self.format_stats([epoch, smooth_loss] + last_metrics) |
|
|
|
def format_stats(self, stats:TensorOrNumList)->None: |
|
"Format stats before printing." |
|
str_stats = [] |
|
for name,stat in zip(self.names,stats): |
|
str_stats.append('#na#' if stat is None else str(stat) if isinstance(stat, int) else f'{stat:.6f}') |
|
if self.add_time: str_stats.append(format_time(time() - self.start_epoch)) |
|
if not self.silent: self.pbar.write(str_stats, table=True) |
|
|
|
def add_metric_names(self, names): |
|
"Add `names` to the inner metric names." |
|
if hasattr(self, '_added_met_names'): self._added_met_names += names |
|
else: self._added_met_names = names |
|
|
|
def plot_lr(self, show_moms=False, skip_start:int=0, skip_end:int=0, return_fig:bool=None)->Optional[plt.Figure]: |
|
"Plot learning rate, `show_moms` to include momentum." |
|
lrs = self._split_list(self.lrs, skip_start, skip_end) |
|
iterations = self._split_list(range_of(self.lrs), skip_start, skip_end) |
|
if show_moms: |
|
moms = self._split_list(self.moms, skip_start, skip_end) |
|
fig, axs = plt.subplots(1,2, figsize=(12,4)) |
|
axs[0].plot(iterations, lrs) |
|
axs[0].set_xlabel('Iterations') |
|
axs[0].set_ylabel('Learning Rate') |
|
axs[1].plot(iterations, moms) |
|
axs[1].set_xlabel('Iterations') |
|
axs[1].set_ylabel('Momentum') |
|
else: |
|
fig, ax = plt.subplots() |
|
ax.plot(iterations, lrs) |
|
ax.set_xlabel('Iterations') |
|
ax.set_ylabel('Learning Rate') |
|
if ifnone(return_fig, defaults.return_fig): return fig |
|
if not IN_NOTEBOOK: plot_sixel(fig) |
|
|
|
@staticmethod |
|
def smoothen_by_spline(xs, ys, **kwargs): |
|
xs = np.arange(len(ys)) |
|
spl = scipy.interpolate.UnivariateSpline(xs, ys, **kwargs) |
|
ys = spl(xs) |
|
return ys |
|
|
|
def plot(self, skip_start:int=10, skip_end:int=5, suggestion:bool=False, return_fig:bool=None, |
|
**kwargs)->Optional[plt.Figure]: |
|
"Plot learning rate and losses, trimmed between `skip_start` and `skip_end`. Optionally plot and return min gradient" |
|
lrs = self._split_list(self.lrs, skip_start, skip_end) |
|
losses = self._split_list(self.losses, skip_start, skip_end) |
|
losses = [x.item() for x in losses] |
|
if 'k' in kwargs: losses = self.smoothen_by_spline(lrs, losses, **kwargs) |
|
fig, ax = plt.subplots(1,1) |
|
ax.plot(lrs, losses) |
|
ax.set_ylabel("Loss") |
|
ax.set_xlabel("Learning Rate") |
|
ax.set_xscale('log') |
|
ax.xaxis.set_major_formatter(plt.FormatStrFormatter('%.0e')) |
|
if suggestion: |
|
try: mg = (np.gradient(np.array(losses))).argmin() |
|
except: |
|
print("Failed to compute the gradients, there might not be enough points.") |
|
return |
|
print(f"Min numerical gradient: {lrs[mg]:.2E}") |
|
ax.plot(lrs[mg],losses[mg],markersize=10,marker='o',color='red') |
|
self.min_grad_lr = lrs[mg] |
|
ml = np.argmin(losses) |
|
print(f"Min loss divided by 10: {lrs[ml]/10:.2E}") |
|
if ifnone(return_fig, defaults.return_fig): return fig |
|
if not IN_NOTEBOOK: plot_sixel(fig) |
|
|
|
def plot_losses(self, skip_start:int=0, skip_end:int=0, return_fig:bool=None)->Optional[plt.Figure]: |
|
"Plot training and validation losses." |
|
fig, ax = plt.subplots(1,1) |
|
losses = self._split_list(self.losses, skip_start, skip_end) |
|
iterations = self._split_list(range_of(self.losses), skip_start, skip_end) |
|
ax.plot(iterations, losses, label='Train') |
|
val_iter = self._split_list_val(np.cumsum(self.nb_batches), skip_start, skip_end) |
|
val_losses = self._split_list_val(self.val_losses, skip_start, skip_end) |
|
ax.plot(val_iter, val_losses, label='Validation') |
|
ax.set_ylabel('Loss') |
|
ax.set_xlabel('Batches processed') |
|
ax.legend() |
|
if ifnone(return_fig, defaults.return_fig): return fig |
|
if not IN_NOTEBOOK: plot_sixel(fig) |
|
|
|
def plot_metrics(self, skip_start:int=0, skip_end:int=0, return_fig:bool=None)->Optional[plt.Figure]: |
|
"Plot metrics collected during training." |
|
assert len(self.metrics) != 0, "There are no metrics to plot." |
|
fig, axes = plt.subplots(len(self.metrics[0]),1,figsize=(6, 4*len(self.metrics[0]))) |
|
val_iter = self._split_list_val(np.cumsum(self.nb_batches), skip_start, skip_end) |
|
axes = axes.flatten() if len(self.metrics[0]) != 1 else [axes] |
|
for i, ax in enumerate(axes): |
|
values = [met[i] for met in self.metrics] |
|
values = self._split_list_val(values, skip_start, skip_end) |
|
ax.plot(val_iter, values) |
|
ax.set_ylabel(str(self.metrics_names[i])) |
|
ax.set_xlabel('Batches processed') |
|
if ifnone(return_fig, defaults.return_fig): return fig |
|
if not IN_NOTEBOOK: plot_sixel(fig) |
|
|
|
def _split_list(self, vals:Collection[float], skip_start:int, skip_end:int): |
|
return vals[skip_start:-skip_end] if skip_end > 0 else vals[skip_start:] |
|
|
|
def _split_list_val(self, vals:Collection[float], skip_start:int, skip_end:int): |
|
val_iter = np.cumsum(self.nb_batches) |
|
start_val = (val_iter - skip_start >= 0).nonzero()[0].min() |
|
end_val = (val_iter[-1] - val_iter - skip_end >= 0).nonzero()[0].max()+1 |
|
return vals[start_val:end_val] if skip_end > 0 else vals[start_val:] |
|
|
|
class FakeOptimizer(): |
|
def step(self): pass |
|
def zero_grad(self): pass |
|
|
|
def load_callback(class_func, state, learn:Learner): |
|
init_kwargs, others = split_kwargs_by_func(state, class_func.__init__) |
|
res = class_func(learn, **init_kwargs) if issubclass(class_func, LearnerCallback) else class_func(**init_kwargs) |
|
for k,v in others.items(): setattr(res, k, v) |
|
return res |
|
|
|
def load_learner(path:PathOrStr, file:PathLikeOrBinaryStream='export.pkl', test:ItemList=None, **db_kwargs): |
|
"Load a `Learner` object saved with `export_state` in `path/file` with empty data, optionally add `test` and load on `cpu`. `file` can be file-like (file or buffer)" |
|
source = Path(path)/file if is_pathlike(file) else file |
|
state = torch.load(source, map_location='cpu') if defaults.device == torch.device('cpu') else torch.load(source) |
|
model = state.pop('model') |
|
src = LabelLists.load_state(path, state.pop('data')) |
|
if test is not None: src.add_test(test) |
|
data = src.databunch(**db_kwargs) |
|
cb_state = state.pop('cb_state') |
|
clas_func = state.pop('cls') |
|
res = clas_func(data, model, **state) |
|
res.callback_fns = state['callback_fns'] |
|
res.callbacks = [load_callback(c,s, res) for c,s in cb_state.items()] |
|
return res |
|
|