sayed99's picture
project upload
cc9dfd7
"Provides basic training and validation with `Learner`"
from .torch_core import *
from .basic_data import *
from .callback import *
from .data_block import *
from .utils.ipython import gpu_mem_restore
import inspect
from fastprogress.fastprogress import format_time, IN_NOTEBOOK
from time import time
from fastai.sixel import plot_sixel
__all__ = ['Learner', 'LearnerCallback', 'Recorder', 'RecordOnCPU', 'fit', 'loss_batch', 'train_epoch', 'validate',
'get_preds', 'load_learner']
defaults.lr = slice(3e-3)
defaults.wd = 1e-2
defaults.extra_callbacks = None
defaults.extra_callback_fns = None
def loss_batch(model:nn.Module, xb:Tensor, yb:Tensor, loss_func:OptLossFunc=None, opt:OptOptimizer=None,
cb_handler:Optional[CallbackHandler]=None, count:[int]=[1], batch_multiplier:int=1)->Tuple[Union[Tensor,int,float,str]]:
"Calculate loss and metrics for a batch, call out to callbacks as necessary."
cb_handler = ifnone(cb_handler, CallbackHandler())
if not is_listy(xb): xb = [xb]
if not is_listy(yb): yb = [yb]
out = model(*xb)
if not loss_func: return to_detach(out), yb[0].detach()
out = cb_handler.on_loss_begin(out)
loss = loss_func(out, *yb)/batch_multiplier
count[0]-=1
if opt is not None:
loss,skip_bwd = cb_handler.on_backward_begin(loss)
if not skip_bwd: loss.backward()
if count[0] == 0:
if not cb_handler.on_backward_end(): opt.step()
if not cb_handler.on_step_end(): opt.zero_grad()
count[0] = batch_multiplier
return loss.detach().cpu()
def get_preds(model:nn.Module, dl:DataLoader, pbar:Optional[PBar]=None, cb_handler:Optional[CallbackHandler]=None,
activ:nn.Module=None, loss_func:OptLossFunc=None, n_batch:Optional[int]=None) -> List[Tensor]:
"Tuple of predictions and targets, and optional losses (if `loss_func`) using `dl`, max batches `n_batch`."
res = [torch.cat(o).cpu() for o in
zip(*validate(model, dl, cb_handler=cb_handler, pbar=pbar, average=False, n_batch=n_batch))]
if loss_func is not None:
with NoneReduceOnCPU(loss_func) as lf: res.append(lf(res[0], res[1]))
if activ is not None: res[0] = activ(res[0])
return res
def validate(model:nn.Module, dl:DataLoader, loss_func:OptLossFunc=None, cb_handler:Optional[CallbackHandler]=None,
pbar:Optional[PBar]=None, average=True, n_batch:Optional[int]=None)->Iterator[Tuple[Union[Tensor,int],...]]:
"Calculate `loss_func` of `model` on `dl` in evaluation mode."
model.eval()
with torch.no_grad():
val_losses,nums = [],[]
if cb_handler: cb_handler.set_dl(dl)
for xb,yb in progress_bar(dl, parent=pbar, leave=(pbar is not None)):
if cb_handler: xb, yb = cb_handler.on_batch_begin(xb, yb, train=False)
val_loss = loss_batch(model, xb, yb, loss_func, cb_handler=cb_handler)
val_losses.append(val_loss)
if not is_listy(yb): yb = [yb]
nums.append(first_el(yb).shape[0])
if cb_handler and cb_handler.on_batch_end(val_losses[-1]): break
if n_batch and (len(nums)>=n_batch): break
nums = np.array(nums, dtype=np.float32)
if average: return (to_np(torch.stack(val_losses)) * nums).sum() / nums.sum()
else: return val_losses
def train_epoch(model:nn.Module, dl:DataLoader, opt:optim.Optimizer, loss_func:LossFunction)->None:
"Simple training of `model` for 1 epoch of `dl` using optim `opt` and loss function `loss_func`."
model.train()
for xb,yb in dl:
loss = loss_func(model(xb), yb)
loss.backward()
opt.step()
opt.zero_grad()
@dataclass
class BasicLearner():
model:nn.Module
loss_func:LossFunction
opt:optim.Optimizer
data:DataBunch
def fit(epochs:int, learn:BasicLearner, callbacks:Optional[CallbackList]=None, metrics:OptMetrics=None, batch_multiplier:int=1)->None:
"Fit the `model` on `data` and learn using `loss_func` and `opt`."
assert len(learn.data.train_dl) != 0, f"""Your training dataloader is empty, can't train a model.
Use a smaller batch size (batch size={learn.data.train_dl.batch_size} for {len(learn.data.train_dl.dataset)} elements)."""
cb_handler = CallbackHandler(callbacks, metrics)
pbar = master_bar(range(epochs))
cb_handler.on_train_begin(epochs, pbar=pbar, metrics=metrics)
exception=False
try:
for epoch in pbar:
learn.model.train()
cb_handler.set_dl(learn.data.train_dl)
cb_handler.on_epoch_begin()
count = [batch_multiplier]
for xb,yb in progress_bar(learn.data.train_dl, parent=pbar):
xb, yb = cb_handler.on_batch_begin(xb, yb)
loss = loss_batch(learn.model, xb, yb, learn.loss_func, learn.opt, cb_handler, count=count, batch_multiplier=batch_multiplier)
if cb_handler.on_batch_end(loss): break
if not cb_handler.skip_validate and not learn.data.empty_val:
val_loss = validate(learn.model, learn.data.valid_dl, loss_func=learn.loss_func,
cb_handler=cb_handler, pbar=pbar)
else: val_loss=None
if cb_handler.on_epoch_end(val_loss): break
except Exception as e:
exception = e
raise
finally: cb_handler.on_train_end(exception)
loss_func_name2activ = {'cross_entropy_loss': F.softmax, 'nll_loss': torch.exp, 'poisson_nll_loss': torch.exp,
'kl_div_loss': torch.exp, 'bce_with_logits_loss': torch.sigmoid, 'cross_entropy': F.softmax,
'kl_div': torch.exp, 'binary_cross_entropy_with_logits': torch.sigmoid,
}
def _loss_func_name2activ(name:str, axis:int=-1):
res = loss_func_name2activ[name]
if res == F.softmax: res = partial(F.softmax, dim=axis)
return res
def _loss_func2activ(loss_func):
if getattr(loss_func,'keywords',None):
if not loss_func.keywords.get('log_input', True): return
axis = getattr(loss_func, 'axis', -1)
# flattened loss
loss_func = getattr(loss_func, 'func', loss_func)
# could have a partial inside flattened loss! Duplicate on purpose.
loss_func = getattr(loss_func, 'func', loss_func)
cls_name = camel2snake(loss_func.__class__.__name__)
if cls_name == 'mix_up_loss':
loss_func = loss_func.crit
cls_name = camel2snake(loss_func.__class__.__name__)
if cls_name in loss_func_name2activ:
if cls_name == 'poisson_nll_loss' and (not getattr(loss_func, 'log_input', True)): return
return _loss_func_name2activ(cls_name, axis)
if getattr(loss_func,'__name__','') in loss_func_name2activ:
return _loss_func_name2activ(loss_func.__name__, axis)
return noop
@dataclass
class Learner():
"Trainer for `model` using `data` to minimize `loss_func` with optimizer `opt_func`."
data:DataBunch
model:nn.Module
opt_func:Callable=AdamW
loss_func:Callable=None
metrics:Collection[Callable]=None
true_wd:bool=True
bn_wd:bool=True
wd:Floats=defaults.wd
train_bn:bool=True
path:str = None
model_dir:PathOrStr = 'models'
callback_fns:Collection[Callable]=None
callbacks:Collection[Callback]=field(default_factory=list)
layer_groups:Collection[nn.Module]=None
add_time:bool=True
silent:bool=None
def __post_init__(self)->None:
"Setup path,metrics, callbacks and ensure model directory exists."
self.path = Path(ifnone(self.path, self.data.path))
self.model = self.model.to(self.data.device)
self.loss_func = self.loss_func or self.data.loss_func
self.metrics=listify(self.metrics)
if not self.layer_groups: self.layer_groups = [nn.Sequential(*flatten_model(self.model))]
self.callbacks = listify(self.callbacks)
if self.silent is None: self.silent = defaults.silent
self.callback_fns = [partial(Recorder, add_time=self.add_time, silent=self.silent)] + listify(self.callback_fns)
def init(self, init): apply_init(self.model, init)
def _test_writeable_path(self):
path = self.path/self.model_dir
try:
path.mkdir(parents=True, exist_ok=True)
tmp_file = get_tmp_file(path)
except OSError as e:
raise Exception(f"{e}\nCan't write to '{path}', set `learn.model_dir` attribute in Learner to a full libpath path that is writable") from None
os.remove(tmp_file)
def lr_range(self, lr:Union[float,slice])->np.ndarray:
"Build differential learning rates from `lr`."
if not isinstance(lr,slice): return lr
if lr.start: res = even_mults(lr.start, lr.stop, len(self.layer_groups))
else: res = [lr.stop/10]*(len(self.layer_groups)-1) + [lr.stop]
return np.array(res)
def fit(self, epochs:int, lr:Union[Floats,slice]=defaults.lr,
wd:Floats=None, callbacks:Collection[Callback]=None, batch_multiplier:int=1)->None:
"Fit the model on this learner with `lr` learning rate, `wd` weight decay for `epochs` with `callbacks`."
lr = self.lr_range(lr)
if wd is None: wd = self.wd
if not getattr(self, 'opt', False): self.create_opt(lr, wd)
else: self.opt.lr,self.opt.wd = lr,wd
callbacks = [cb(self) for cb in self.callback_fns + listify(defaults.extra_callback_fns)] + listify(callbacks)
if defaults.extra_callbacks is not None: callbacks += defaults.extra_callbacks
fit(epochs, self, metrics=self.metrics, callbacks=self.callbacks+callbacks, batch_multiplier=batch_multiplier)
def create_opt(self, lr:Floats, wd:Floats=0.)->None:
"Create optimizer with `lr` learning rate and `wd` weight decay."
self.opt = OptimWrapper.create(self.opt_func, lr, self.layer_groups, wd=wd, true_wd=self.true_wd, bn_wd=self.bn_wd)
def split(self, split_on:SplitFuncOrIdxList)->None:
"Split the model at `split_on`."
if isinstance(split_on,Callable): split_on = split_on(self.model)
self.layer_groups = split_model(self.model, split_on)
return self
def freeze_to(self, n:int)->None:
"Freeze layers up to layer group `n`."
for g in self.layer_groups[:n]:
for l in g:
if not self.train_bn or not isinstance(l, bn_types): requires_grad(l, False)
for g in self.layer_groups[n:]: requires_grad(g, True)
self.create_opt(defaults.lr)
def freeze(self)->None:
"Freeze up to last layer group."
assert(len(self.layer_groups)>1)
self.freeze_to(-1)
def unfreeze(self):
"Unfreeze entire model."
self.freeze_to(0)
def export(self, file:PathLikeOrBinaryStream='export.pkl', destroy=False):
"Export the state of the `Learner` in `self.path/file`. `file` can be file-like (file or buffer)"
if rank_distrib(): return # don't save if slave proc
args = ['opt_func', 'loss_func', 'metrics', 'true_wd', 'bn_wd', 'wd', 'train_bn', 'model_dir', 'callback_fns']
state = {a:getattr(self,a) for a in args}
state['cb_state'] = {cb.__class__:cb.get_state() for cb in self.callbacks}
#layer_groups -> need to find a way
#TO SEE: do we save model structure and weights separately?
with ModelOnCPU(self.model) as m:
state['model'] = m
xtra = dict(normalize=self.data.norm.keywords) if getattr(self.data, 'norm', False) else {}
state['data'] = self.data.valid_ds.get_state(**xtra)
state['cls'] = self.__class__
try_save(state, self.path, file)
if destroy: self.destroy()
def save(self, file:PathLikeOrBinaryStream=None, return_path:bool=False, with_opt:bool=True):
"Save model and optimizer state (if `with_opt`) with `file` to `self.model_dir`. `file` can be file-like (file or buffer)"
if is_pathlike(file): self._test_writeable_path()
if rank_distrib(): return # don't save if slave proc
target = self.path/self.model_dir/f'{file}.pth' if is_pathlike(file) else file
if not hasattr(self, 'opt'): with_opt=False
if not with_opt: state = get_model(self.model).state_dict()
else: state = {'model': get_model(self.model).state_dict(), 'opt':self.opt.state_dict()}
torch.save(state, target)
if return_path: return target
def dl(self, ds_type:DatasetType=DatasetType.Valid):
"Return DataLoader for DatasetType `ds_type`."
return self.data.dl(ds_type)
def load(self, file:PathLikeOrBinaryStream=None, device:torch.device=None, strict:bool=True,
with_opt:bool=None, purge:bool=True, remove_module:bool=False):
"Load model and optimizer state (if `with_opt`) `file` from `self.model_dir` using `device`. `file` can be file-like (file or buffer)"
if purge: self.purge(clear_opt=ifnone(with_opt, False))
if device is None: device = self.data.device
elif isinstance(device, int): device = torch.device('cuda', device)
source = self.path/self.model_dir/f'{file}.pth' if is_pathlike(file) else file
state = torch.load(source, map_location=device)
if set(state.keys()) == {'model', 'opt'}:
model_state = state['model']
if remove_module: model_state = remove_module_load(model_state)
get_model(self.model).load_state_dict(model_state, strict=strict)
if ifnone(with_opt,True):
if not hasattr(self, 'opt'): self.create_opt(defaults.lr, self.wd)
try: self.opt.load_state_dict(state['opt'])
except: pass
else:
if with_opt: warn("Saved filed doesn't contain an optimizer state.")
if remove_module: state = remove_module_load(state)
get_model(self.model).load_state_dict(state, strict=strict)
del state
gc.collect()
return self
def destroy(self):
"Free the Learner internals, leaving just an empty shell that consumes no memory"
class ZombieLearner(Learner):
msg = "this object has been destroyed"
def __getattr__(self, item): print(ZombieLearner.msg); return None
def destroyed(*args, **kwargs): print(ZombieLearner.msg)
attrs = [k for k in self.__dict__.keys() if not k.startswith("__")]
for a in attrs: delattr(self, a)
# the instance methods can still be called, but will just give a message
methods = [k for k in dir(self) if not k.startswith("__") and inspect.isroutine(getattr(self, k))]
for m in methods: setattr(self, m, ZombieLearner.destroyed)
self.__class__ = ZombieLearner
gc.collect()
print("this Learner object self-destroyed - it still exists, but no longer usable")
def purge(self, clear_opt:bool=True):
"Purge the `Learner` of all cached attributes to release some GPU memory."
self._test_writeable_path()
attrs_all = [k for k in self.__dict__.keys() if not k.startswith("__")]
attrs_pkl = ['bn_wd', 'callback_fns', 'layer_groups', 'loss_func', 'metrics', 'model',
'model_dir', 'opt_func', 'path', 'train_bn', 'true_wd', 'wd']
# +callbacks: get pickled too, but not directly
attrs_keep = ['data', 'recorder']
attrs_del = list(set(attrs_all) - set(attrs_keep))
state = {a:getattr(self, a) for a in attrs_pkl}
state['cb_state'] = {cb.__class__:cb.get_state() for cb in self.callbacks}
if hasattr(self, 'opt'): state['opt'] = self.opt.get_state()
tmp_file = get_tmp_file(self.path/self.model_dir)
torch.save(state, open(tmp_file, 'wb'))
for a in attrs_del: delattr(self, a)
gc.collect()
state = torch.load(tmp_file)
os.remove(tmp_file)
for a in attrs_pkl: setattr(self, a, state[a])
cb_state = state.pop('cb_state')
self.callbacks = [load_callback(c,s, self) for c,s in cb_state.items()]
if not clear_opt and 'opt' in state:
try: self.opt = OptimWrapper.load_with_state_and_layer_group(state['opt'], self.layer_groups)
except: warn("Wasn't able to properly load the optimizer state again.")
del state
gc.collect()
return self
def get_preds(self, ds_type:DatasetType=DatasetType.Valid, with_loss:bool=False, n_batch:Optional[int]=None,
pbar:Optional[PBar]=None) -> List[Tensor]:
"Return predictions and targets on `ds_type` dataset."
lf = self.loss_func if with_loss else None
return get_preds(self.model, self.dl(ds_type), cb_handler=CallbackHandler(self.callbacks),
activ=_loss_func2activ(self.loss_func), loss_func=lf, n_batch=n_batch, pbar=pbar)
def pred_batch(self, ds_type:DatasetType=DatasetType.Valid, batch:Tuple=None, reconstruct:bool=False, with_dropout:bool=False) -> List[Tensor]:
with torch.no_grad():
training = self.model.training
self.model.train(False)
"Return output of the model on one batch from `ds_type` dataset."
if batch is not None: xb,yb = batch
else: xb,yb = self.data.one_batch(ds_type, detach=False, denorm=False)
cb_handler = CallbackHandler(self.callbacks)
xb,yb = cb_handler.on_batch_begin(xb,yb, train=False)
if not with_dropout:
preds = loss_batch(self.model.eval(), xb, yb, cb_handler=cb_handler)
else:
preds = loss_batch(self.model.eval().apply(self.apply_dropout), xb, yb, cb_handler=cb_handler)
res = _loss_func2activ(self.loss_func)(preds[0])
self.model.train(training)
if not reconstruct: return res
res = res.detach().cpu()
ds = self.dl(ds_type).dataset
norm = getattr(self.data, 'norm', False)
if norm and norm.keywords.get('do_y',False):
res = self.data.denorm(res, do_x=True)
return [ds.reconstruct(o) for o in res]
def backward(self, item):
"Pass `item` through the model and computes the gradient. Useful if `backward_hooks` are attached."
xb,yb = self.data.one_item(item)
loss = loss_batch(self.model.eval(), xb, yb, self.loss_func, opt=FakeOptimizer(),
cb_handler=CallbackHandler(self.callbacks))
return loss
def predict(self, item:ItemBase, return_x:bool=False, batch_first:bool=True, with_dropout:bool=False, **kwargs):
"Return predicted class, label and probabilities for `item`."
batch = self.data.one_item(item)
res = self.pred_batch(batch=batch, with_dropout=with_dropout)
raw_pred,x = grab_idx(res,0,batch_first=batch_first),batch[0]
norm = getattr(self.data,'norm',False)
if norm:
x = self.data.denorm(x)
if norm.keywords.get('do_y',False): raw_pred = self.data.denorm(raw_pred)
ds = self.data.single_ds
pred = ds.y.analyze_pred(raw_pred, **kwargs)
x = ds.x.reconstruct(grab_idx(x, 0))
y = ds.y.reconstruct(pred, x) if has_arg(ds.y.reconstruct, 'x') else ds.y.reconstruct(pred)
return (x, y, pred, raw_pred) if return_x else (y, pred, raw_pred)
def validate(self, dl=None, callbacks=None, metrics=None):
"Validate on `dl` with potential `callbacks` and `metrics`."
dl = ifnone(dl, self.data.valid_dl)
metrics = ifnone(metrics, self.metrics)
cb_handler = CallbackHandler(self.callbacks + ifnone(callbacks, []), metrics)
cb_handler.on_epoch_begin()
val_metrics = validate(self.model, dl, self.loss_func, cb_handler)
cb_handler.on_epoch_end(val_metrics)
return cb_handler.state_dict['last_metrics']
def show_results(self, ds_type=DatasetType.Valid, rows:int=5, **kwargs):
"Show `rows` result of predictions on `ds_type` dataset."
#TODO: get read of has_arg x and split_kwargs_by_func if possible
#TODO: simplify this and refactor with pred_batch(...reconstruct=True)
n_items = rows ** 2 if self.data.train_ds.x._square_show_res else rows
if self.dl(ds_type).batch_size < n_items: n_items = self.dl(ds_type).batch_size
ds = self.dl(ds_type).dataset
self.callbacks.append(RecordOnCPU())
preds = self.pred_batch(ds_type)
*self.callbacks,rec_cpu = self.callbacks
x,y = rec_cpu.input,rec_cpu.target
norm = getattr(self.data,'norm',False)
if norm:
x = self.data.denorm(x)
if norm.keywords.get('do_y',False):
y = self.data.denorm(y, do_x=True)
preds = self.data.denorm(preds, do_x=True)
analyze_kwargs,kwargs = split_kwargs_by_func(kwargs, ds.y.analyze_pred)
preds = [ds.y.analyze_pred(grab_idx(preds, i), **analyze_kwargs) for i in range(n_items)]
xs = [ds.x.reconstruct(grab_idx(x, i)) for i in range(n_items)]
if has_arg(ds.y.reconstruct, 'x'):
ys = [ds.y.reconstruct(grab_idx(y, i), x=x) for i,x in enumerate(xs)]
zs = [ds.y.reconstruct(z, x=x) for z,x in zip(preds,xs)]
else :
ys = [ds.y.reconstruct(grab_idx(y, i)) for i in range(n_items)]
zs = [ds.y.reconstruct(z) for z in preds]
ds.x.show_xyzs(xs, ys, zs, **kwargs)
def apply_dropout(self, m):
"If a module contains 'dropout' in it's name, it will be switched to .train() mode."
if 'dropout' in m.__class__.__name__.lower(): m.train()
def predict_with_mc_dropout(self, item:ItemBase, with_dropout:bool=True, n_times=10, **kwargs):
"Make predictions with dropout turned on for n_times (default 10)."
return [self.predict(item, with_dropout=with_dropout) for _ in range(n_times)]
class RecordOnCPU(Callback):
"Store the `input` and `target` going through the model on the CPU."
def on_batch_begin(self, last_input,last_target,**kwargs):
self.input,self.target = to_cpu(last_input),to_cpu(last_target)
class LearnerCallback(Callback):
"Base class for creating callbacks for a `Learner`."
def __init__(self, learn):
self._learn = weakref.ref(learn)
self.exclude,self.not_min = ['_learn'],[]
setattr(self.learn, self.cb_name, self)
def __getattr__(self,k): return getattr(self.learn, k)
def __setstate__(self,data:Any): self.__dict__.update(data)
@property
def learn(self) -> Learner: return self._learn()
@learn.setter
def learn(self, learn: Learner) -> None: self._learn = weakref.ref(learn)
@property
def cb_name(self): return camel2snake(self.__class__.__name__)
class Recorder(LearnerCallback):
"A `LearnerCallback` that records epoch, loss, opt and metric data during training."
_order=-10
def __init__(self, learn:Learner, add_time:bool=True, silent:bool=False):
super().__init__(learn)
self.opt = self.learn.opt
self.train_dl = self.learn.data.train_dl
self.no_val,self.silent,self.add_time = False,silent,add_time
def on_train_begin(self, pbar:PBar, metrics_names:Collection[str], **kwargs:Any)->None:
"Initialize recording status at beginning of training."
self.pbar = pbar
self.names = ['epoch', 'train_loss'] if self.no_val else ['epoch', 'train_loss', 'valid_loss']
self.metrics_names = metrics_names
if hasattr(self, '_added_met_names'): self.metrics_names += self._added_met_names
self.names += self.metrics_names
if self.add_time: self.names.append('time')
if not self.silent: self.pbar.write(self.names, table=True)
self.losses,self.val_losses,self.lrs,self.moms,self.metrics,self.nb_batches = [],[],[],[],[],[]
def on_epoch_begin(self, **kwargs:Any)->None:
if self.add_time: self.start_epoch = time()
def on_batch_begin(self, train, **kwargs:Any)->None:
"Record learning rate and momentum at beginning of batch."
if train:
self.lrs.append(self.opt.lr)
self.moms.append(self.opt.mom)
def on_backward_begin(self, smooth_loss:Tensor, **kwargs:Any)->None:
"Record the loss before any other callback has a chance to modify it."
self.losses.append(smooth_loss)
if self.pbar is not None and hasattr(self.pbar,'child'):
self.pbar.child.comment = f'{smooth_loss:.4f}'
def on_epoch_end(self, epoch:int, num_batch:int, smooth_loss:Tensor,
last_metrics=MetricsList, **kwargs:Any)->bool:
"Save epoch info: num_batch, smooth_loss, metrics."
self.nb_batches.append(num_batch)
if last_metrics is not None: self.val_losses.append(last_metrics[0])
else: last_metrics = [] if self.no_val else [None]
if len(last_metrics) > 1: self.metrics.append(last_metrics[1:])
self.format_stats([epoch, smooth_loss] + last_metrics)
def format_stats(self, stats:TensorOrNumList)->None:
"Format stats before printing."
str_stats = []
for name,stat in zip(self.names,stats):
str_stats.append('#na#' if stat is None else str(stat) if isinstance(stat, int) else f'{stat:.6f}')
if self.add_time: str_stats.append(format_time(time() - self.start_epoch))
if not self.silent: self.pbar.write(str_stats, table=True)
def add_metric_names(self, names):
"Add `names` to the inner metric names."
if hasattr(self, '_added_met_names'): self._added_met_names += names
else: self._added_met_names = names
def plot_lr(self, show_moms=False, skip_start:int=0, skip_end:int=0, return_fig:bool=None)->Optional[plt.Figure]:
"Plot learning rate, `show_moms` to include momentum."
lrs = self._split_list(self.lrs, skip_start, skip_end)
iterations = self._split_list(range_of(self.lrs), skip_start, skip_end)
if show_moms:
moms = self._split_list(self.moms, skip_start, skip_end)
fig, axs = plt.subplots(1,2, figsize=(12,4))
axs[0].plot(iterations, lrs)
axs[0].set_xlabel('Iterations')
axs[0].set_ylabel('Learning Rate')
axs[1].plot(iterations, moms)
axs[1].set_xlabel('Iterations')
axs[1].set_ylabel('Momentum')
else:
fig, ax = plt.subplots()
ax.plot(iterations, lrs)
ax.set_xlabel('Iterations')
ax.set_ylabel('Learning Rate')
if ifnone(return_fig, defaults.return_fig): return fig
if not IN_NOTEBOOK: plot_sixel(fig)
@staticmethod
def smoothen_by_spline(xs, ys, **kwargs):
xs = np.arange(len(ys))
spl = scipy.interpolate.UnivariateSpline(xs, ys, **kwargs)
ys = spl(xs)
return ys
def plot(self, skip_start:int=10, skip_end:int=5, suggestion:bool=False, return_fig:bool=None,
**kwargs)->Optional[plt.Figure]:
"Plot learning rate and losses, trimmed between `skip_start` and `skip_end`. Optionally plot and return min gradient"
lrs = self._split_list(self.lrs, skip_start, skip_end)
losses = self._split_list(self.losses, skip_start, skip_end)
losses = [x.item() for x in losses]
if 'k' in kwargs: losses = self.smoothen_by_spline(lrs, losses, **kwargs)
fig, ax = plt.subplots(1,1)
ax.plot(lrs, losses)
ax.set_ylabel("Loss")
ax.set_xlabel("Learning Rate")
ax.set_xscale('log')
ax.xaxis.set_major_formatter(plt.FormatStrFormatter('%.0e'))
if suggestion:
try: mg = (np.gradient(np.array(losses))).argmin()
except:
print("Failed to compute the gradients, there might not be enough points.")
return
print(f"Min numerical gradient: {lrs[mg]:.2E}")
ax.plot(lrs[mg],losses[mg],markersize=10,marker='o',color='red')
self.min_grad_lr = lrs[mg]
ml = np.argmin(losses)
print(f"Min loss divided by 10: {lrs[ml]/10:.2E}")
if ifnone(return_fig, defaults.return_fig): return fig
if not IN_NOTEBOOK: plot_sixel(fig)
def plot_losses(self, skip_start:int=0, skip_end:int=0, return_fig:bool=None)->Optional[plt.Figure]:
"Plot training and validation losses."
fig, ax = plt.subplots(1,1)
losses = self._split_list(self.losses, skip_start, skip_end)
iterations = self._split_list(range_of(self.losses), skip_start, skip_end)
ax.plot(iterations, losses, label='Train')
val_iter = self._split_list_val(np.cumsum(self.nb_batches), skip_start, skip_end)
val_losses = self._split_list_val(self.val_losses, skip_start, skip_end)
ax.plot(val_iter, val_losses, label='Validation')
ax.set_ylabel('Loss')
ax.set_xlabel('Batches processed')
ax.legend()
if ifnone(return_fig, defaults.return_fig): return fig
if not IN_NOTEBOOK: plot_sixel(fig)
def plot_metrics(self, skip_start:int=0, skip_end:int=0, return_fig:bool=None)->Optional[plt.Figure]:
"Plot metrics collected during training."
assert len(self.metrics) != 0, "There are no metrics to plot."
fig, axes = plt.subplots(len(self.metrics[0]),1,figsize=(6, 4*len(self.metrics[0])))
val_iter = self._split_list_val(np.cumsum(self.nb_batches), skip_start, skip_end)
axes = axes.flatten() if len(self.metrics[0]) != 1 else [axes]
for i, ax in enumerate(axes):
values = [met[i] for met in self.metrics]
values = self._split_list_val(values, skip_start, skip_end)
ax.plot(val_iter, values)
ax.set_ylabel(str(self.metrics_names[i]))
ax.set_xlabel('Batches processed')
if ifnone(return_fig, defaults.return_fig): return fig
if not IN_NOTEBOOK: plot_sixel(fig)
def _split_list(self, vals:Collection[float], skip_start:int, skip_end:int):
return vals[skip_start:-skip_end] if skip_end > 0 else vals[skip_start:]
def _split_list_val(self, vals:Collection[float], skip_start:int, skip_end:int):
val_iter = np.cumsum(self.nb_batches)
start_val = (val_iter - skip_start >= 0).nonzero()[0].min()
end_val = (val_iter[-1] - val_iter - skip_end >= 0).nonzero()[0].max()+1
return vals[start_val:end_val] if skip_end > 0 else vals[start_val:]
class FakeOptimizer():
def step(self): pass
def zero_grad(self): pass
def load_callback(class_func, state, learn:Learner):
init_kwargs, others = split_kwargs_by_func(state, class_func.__init__)
res = class_func(learn, **init_kwargs) if issubclass(class_func, LearnerCallback) else class_func(**init_kwargs)
for k,v in others.items(): setattr(res, k, v)
return res
def load_learner(path:PathOrStr, file:PathLikeOrBinaryStream='export.pkl', test:ItemList=None, **db_kwargs):
"Load a `Learner` object saved with `export_state` in `path/file` with empty data, optionally add `test` and load on `cpu`. `file` can be file-like (file or buffer)"
source = Path(path)/file if is_pathlike(file) else file
state = torch.load(source, map_location='cpu') if defaults.device == torch.device('cpu') else torch.load(source)
model = state.pop('model')
src = LabelLists.load_state(path, state.pop('data'))
if test is not None: src.add_test(test)
data = src.databunch(**db_kwargs)
cb_state = state.pop('cb_state')
clas_func = state.pop('cls')
res = clas_func(data, model, **state)
res.callback_fns = state['callback_fns'] #to avoid duplicates
res.callbacks = [load_callback(c,s, res) for c,s in cb_state.items()]
return res