|
from .torch_core import * |
|
from .basic_train import Learner,LearnerCallback |
|
from torch.nn.parallel import DistributedDataParallel, DataParallel |
|
from torch.utils.data.distributed import DistributedSampler |
|
|
|
from fastai.text import TextLMDataBunch |
|
|
|
__all__ = ['DistributedRecorder', 'DistributedTrainer', 'read_metrics', 'setup_distrib'] |
|
|
|
def rnn_reset(self): |
|
if hasattr(self.module, 'reset'): self.module.reset() |
|
DistributedDataParallel.reset = rnn_reset |
|
|
|
class ParallelTrainer(LearnerCallback): |
|
_order = -20 |
|
def on_train_begin(self, **kwargs): self.learn.model = DataParallel(self.learn.model) |
|
def on_train_end (self, **kwargs): self.learn.model = self.learn.model.module |
|
|
|
class DistributedTrainer(LearnerCallback): |
|
_order = -20 |
|
def __init__(self, learn:Learner, cuda_id:int=0): |
|
super().__init__(learn) |
|
self.cuda_id,self.train_sampler = cuda_id,None |
|
|
|
def _change_dl(self, dl, shuffle): |
|
old_dl = dl |
|
sampler = OurDistributedSampler(dl.dataset, shuffle=shuffle) |
|
new_dl = dl.new(shuffle=False, sampler=sampler) |
|
return old_dl,new_dl,sampler |
|
|
|
def on_train_begin(self, **kwargs): |
|
self.learn.model = DistributedDataParallel(self.model, device_ids=[self.cuda_id], output_device=self.cuda_id) |
|
shuffle = self.data.train_dl.init_kwargs['shuffle'] if hasattr(self.data.train_dl, 'init_kwargs') else True |
|
self.old_train_dl,self.data.train_dl,self.train_sampler = self._change_dl(self.data.train_dl, shuffle) |
|
if hasattr(self.data, 'valid_dl') and self.data.valid_dl is not None: |
|
self.old_valid_dl,self.data.valid_dl,self.valid_sampler = self._change_dl(self.data.valid_dl, shuffle) |
|
self.rank = rank_distrib() |
|
self.recorder.silent = (self.rank != 0) |
|
|
|
def on_epoch_begin(self, epoch, **kwargs): self.train_sampler.set_epoch(epoch) |
|
|
|
def on_train_end(self, **kwargs): |
|
self.learn.model = self.learn.model.module |
|
self.learn.data.train_dl = self.old_train_dl |
|
if hasattr(self.learn.data, 'valid_dl') and self.learn.data.valid_dl is not None: |
|
self.learn.data.valid_dl = self.old_valid_dl |
|
|
|
class DistributedRecorder(LearnerCallback): |
|
def __init__(self, learn:Learner, cuda_id:int=0, cache_dir:PathOrStr='tmp'): |
|
super().__init__(learn) |
|
self.cuda_id,self.cache_dir = cuda_id,cache_dir |
|
|
|
def on_train_begin(self, **kwargs): |
|
os.makedirs(self.learn.path/self.cache_dir, exist_ok=True) |
|
|
|
def on_epoch_end(self, **kwargs): self.save_stats() |
|
def on_train_end(self, **kwargs): self.save_stats() |
|
|
|
def save_stats(self): |
|
cache_path,recorder = self.learn.path/self.cache_dir,self.learn.recorder |
|
np.save(cache_path/f'losses_{self.cuda_id}', np.array(recorder.losses)) |
|
stats = np.array([[v] + m for v,m in zip(recorder.val_losses,recorder.metrics)]) |
|
np.save(cache_path/f'metrics_{self.cuda_id}', stats) |
|
|
|
def _learner_parallel(learn:Learner): |
|
"Use nn.DataParallel when training and remove when done" |
|
if not torch.cuda.is_available(): warnings.warn('CUDA is not available, check your drivers - training will continue on CPU', ResourceWarning) |
|
learn.callbacks.append(ParallelTrainer(learn)) |
|
return learn |
|
|
|
def _learner_distributed(learn:Learner, cuda_id:int, cache_dir:PathOrStr='tmp'): |
|
"Put `learn` on distributed training with `cuda_id`." |
|
learn.callbacks.append(DistributedTrainer(learn, cuda_id)) |
|
learn.callbacks.append(DistributedRecorder(learn, cuda_id, cache_dir)) |
|
return learn |
|
|
|
Learner.to_distributed = _learner_distributed |
|
Learner.to_parallel = _learner_parallel |
|
|
|
def read_metrics(cache_path:PathOrStr, n_gpus:int, reduce:bool=True): |
|
losses,metrics = [],[] |
|
for i in range(n_gpus): |
|
losses.append(np.load(cache_path/f'losses_{i}.npy')[None]) |
|
metrics.append(np.load(cache_path/f'metrics_{i}.npy')[None]) |
|
if reduce: |
|
losses,metrics = np.concatenate(losses,0),np.concatenate(metrics,0) |
|
return losses.mean(0),metrics.mean(0) |
|
return losses,metrics |
|
|
|
def setup_distrib(gpu:Any=None): |
|
if gpu is None: return gpu |
|
gpu = int(gpu) |
|
torch.cuda.set_device(int(gpu)) |
|
if num_distrib() > 1: |
|
torch.distributed.init_process_group(backend='nccl', init_method='env://') |
|
return gpu |
|
|
|
class OurDistributedSampler(DistributedSampler): |
|
"A sampler for language models with the option to not shuffle." |
|
def __init__(self, dataset, num_replicas=None, rank=None, shuffle=True): |
|
super().__init__(dataset, num_replicas=num_replicas, rank=rank) |
|
self.shuffle = shuffle |
|
|
|
def __iter__(self): |
|
if self.shuffle: |
|
g = torch.Generator() |
|
g.manual_seed(self.epoch) |
|
indices = torch.randperm(len(self.dataset), generator=g).tolist() |
|
else: indices = torch.arange(len(self.dataset)).tolist() |
|
|
|
|
|
indices += indices[:(self.total_size - len(indices))] |
|
assert len(indices) == self.total_size |
|
|
|
|
|
indices = indices[self.rank:self.total_size:self.num_replicas] |
|
assert len(indices) == self.num_samples |
|
|
|
return iter(indices) |
|
|